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Summary

Estimation of average treatment effects under unconfounded or ignorable treatment
assignment is often hampered by lack of overlap in the covariate distributions between
treatment groups. This lack of overlap can lead to imprecise estimates, and can make
commonly used estimators sensitive to the choice of specification. In such cases re-
searchers have often used ad hoc methods for trimming the sample. In this paper we
develop a systematic approach to addressing lack of overlap. We characterize optimal
subsamples for which the average treatment effect can be estimated most precisely.
Under some conditions, the optimal selection rules depend solely on the propensity
score. For a wide range of distributions, a good approximation to the optimal rule is
provided by the simple rule of thumb to discard all units with estimated propensity
scores outside the range [0.1, 0.9].
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1. Introduction

There is a large literature on estimating average treatment effects under assump-

tions of unconfoundedness or ignorability, following the seminal work by Rubin (1974,

1997), Rosenbaum & Rubin (1983), and Rosenbaum (1989). Researchers have devel-

oped estimators based on regression methods (Hahn, 1998; Heckman et al., 1998),

matching (Rosenbaum, 1989; Abadie & Imbens, 2006), and methods based on the

propensity score (Rosenbaum & Rubin, 1983; Hirano et al., 2003). Related methods

for missing data problems are discussed in Robins & Rotnitzky (1995); see Rosen-

baum (2001) and Imbens (2004) for general surveys. An important practical concern

in implementing these methods is the need for overlap in the covariate distributions

in the treated and control subpopulations. Even if the supports of the two covariate

distributions are identical, there may be parts of the covariate space with limited

numbers of observations for either the treatment or control group. Such areas of

limited overlap can lead to conventional estimators of average treatment effects hav-

ing substantial bias and large variances. Often researchers discard units for whom

there are no close counterparts in the subsample with the opposite treatment. The

implementation of these methods is typically ad hoc, with, for example, researchers

discarding units for whom they cannot find a match that is identical in terms of the

propensity score up to 1, 2 or even 8 digits; see for example Grzybowski et al. (2003)

and Vincent et al. (2002).

We propose a systematic approach to dealing with samples with limited overlap

in the covariate distributions in the two treatment arms. Our proposed method is

not tied or limited to a specific estimator. It has some optimality properties and

is straightforward to implement in practice. We focus on average treatment effects

within a selected subpopulation, defined solely in terms of covariate values, and look

for the subpopulation that allows for the most precise estimation of the average treat-

ment effect. We show that this problem is, in general, well defined, and, under some

conditions, leads to discarding observations with propensity scores outside an interval
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[α, 1−α], with the optimal cut-off value α determined by the marginal distribution of

the propensity score. Our approach is consistent with the common practice of drop-

ping units with extreme values of the propensity score, with two differences. First,

the role of the propensity score in the selection rule is not imposed a priori, but

emerges as a consequence of the criterion, and, second, there is a principled way of

choosing the cut-off value α. The subset of observations is defined solely in terms of

the joint distribution of covariates and the treatment indicator, and does not depend

on the distribution of the outcomes. As a result, we avoid introducing deliberate

bias with respect to the treatment effects being analysed. The precision gain from

this approach can be substantial, with most of the gain captured by using a rule of

thumb to discard observations with the estimated propensity score outside the range

[0.1, 0.9]. The main cost is that potentially some external validity is lost by changing

the focus to average treatment effects for a subset of the original sample.

We illustrate these methods using data on right heart catheterization from the

Study to Understand Prognoses and Preferences for Outcomes and Risks of Treat-

ments.

2. The framework and a simple example

2·1. Underlying framework

The framework we use is that of Rosenbaum & Rubin (1983). We have a random

sample of size N from a large population. For each unit i in the sample, let Wi

indicate whether or not the treatment of interest was received, with Wi = 1 if unit i

receives the treatment of interest, and Wi = 0 if unit i receives the control treatment.

Let Yi(0) denote the outcome for unit i under control and Yi(1) the outcome under

treatment. We observe Wi and Yi, where

Yi = Yi(Wi) =

{

Yi(0) if Wi = 0,
Yi(1) if Wi = 1.

In addition, we observe a K-dimensional vector of pre-treatment variables, or covari-

ates, denoted by Xi, with support X ⊂ R
K . Define the two conditional mean func-
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tions, µw(x) = E{Yi(w)|Xi = x}, the two conditional variance functions, σ2
w(x) =

var{Yi(w)|Xi = x}, the conditional average treatment effect τ (x) = E{Yi(1) −

Yi(0)|Xi = x} = µ1(x)− µ0(x), and the propensity score, the probability of selection

into the treatment, e(x) = pr(Wi = 1|Xi = x) = E (Wi|Xi = x).

We primarily focus on the sample and population average treatment effects

τS =
1

N

N
∑

i=1

τ (Xi), τP = E {Yi(1) − Yi(0)} .

The difference between these estimands is important for our analyses, and we return

to this issue in Remark 1 below. For sets A ⊂ X, let 1Xi∈A be an indicator for the

event that Xi is an element of the set A, and define the subsample average treatment

effect

τS,A =
1

NA

∑

i:Xi∈A

τ (Xi), NA =

N
∑

i=1

1Xi∈A,

so that τS,X = τS. We denote estimators for the sample and population average

treatment effects by τ̂ and for the subsample average treatment effect by τ̂A. There is

no need to index the estimators by S or P because estimators for the sample average

treatment effect are estimators for the population average treatment effect as well.

To solve the identification problem, we maintain throughout the paper the fol-

lowing two assumptions. The first, the unconfoundedness assumption (Rosenbaum &

Rubin, 1983), asserts that conditional on the pre-treatment variables, the treatment

indicator is independent of the potential outcomes. The second assumption ensures

overlap in the covariate distributions.

Assumption 1. We assume that Wi ⊥⊥ (Yi(0), Yi(1))
∣

∣ Xi.

Assumption 2. For some c > 0, and all x ∈ X, c ≤ e(x) ≤ 1 − c.

The combination of these two assumptions is referred to as strong ignorability (Rosen-

baum & Rubin, 1983).
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2·2. A simple example

Consider the following example in which the covariate is a binary scalar. Suppose

that Xi = f , female, or Xi = m, male, so that X = {f,m}. For x = f,m, let

Nx be the sample size for the subsample with Xi = x, and let N = Nf + Nm be

the overall sample size. Also, let p = pr(Xi = m) be the population proportion

of men, with p̂ = Nm/N . We use the shorthand τx for τ{x}, for x = f,m. Let

Nxw be the number of observations with covariate Xi = x and treatment indicator

Wi = w, and let êx = Nx1/Nx denote the value of the estimated propensity score,

for x = f,m. Finally, let Ȳxw =
∑

i:Xi=x,Wi=w Yi/Nxw be the average outcome for the

four subsamples. We assume that the distribution of the outcomes is homoskedastic,

so that var{Yi(w)|Xi = x} = σ2 for all x = f,m and w = 0, 1. The sample and

population average effects can be written as

τS = p̂τm + (1 − p̂)τf , τP = pτm + (1 − p)τf .

If the unconfoundedness assumption is maintained, the natural estimators for the

average treatment effects for each of the two subpopulations are

τ̂f = Ȳf1 − Ȳf0, τ̂m = Ȳm1 − Ȳm0.

These estimators are unbiased and conditional on the covariates and treatment indi-

cators their exact variances are

var (τ̂f |X,W ) = σ2

(

1

Nf0
+

1

Nf1

)

=
1

N

σ2

êf (1 − êf)(1 − p̂)
,

and

var (τ̂m|X,W ) = σ2

(

1

Nm0
+

1

Nm1

)

=
1

N

σ2

êm(1 − êm)p̂
.

respectively. The natural estimator for the sample, as well as the population, average

treatment effect is

τ̂ = p̂τ̂m + (1 − p̂)τ̂f .
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This estimator is unbiased for τS, conditional on X and W , and unbiased, uncondi-

tionally, for τP. The conditional variance of τ̂S is

var (τ̂ |X,W ) =
σ2

N

{

p̂

êm(1 − êm)
+

1 − p̂

êf(1 − êf)

}

.

It follows that the asymptotic variance of N1/2(τ̂ − τS) converges to

avar
{

N1/2 (τ̂ − τS)
}

= σ2

{

p

em(1 − em)
+

1 − p

ef (1 − ef)

}

= E

{

σ2

eX(1 − eX)

}

. (1)

The asymptotic unconditional variance of τ̂ , that is, the asymptotic variance of

N1/2(τ̂ − τP), is

avar
{

N1/2 (τ̂ − τP)
}

= E

{

σ2

eX(1 − eX)
+ (τX − τP)

2

}

. (2)

Now let us turn to estimators for subpopulation average treatment effects of the

type τS,A. The key result of the paper concerns the comparison of var(τ̂A|X,W ) for

different sets A, according to a variance minimization criterion. Let A be the set of

all subsets of X, excluding the empty set. Then we are interested in the set Â that

solves

var(τ̂
Â
|X,W ) = inf

A∈A
var(τ̂S,A|X,W ). (3)

In the binary covariate example considered in this section, X = {f,m}, so that

A = {{f}, {m}, {f,m}}, and the problem simplifies to finding the set Â that solves

var(τ̂
Â
|X,W ) = min{var(τ̂ |X,W ), var(τ̂f |X,W ), var(τ̂m|X,W )} .

In this case the solution is given by

Â =







{f} if {êm(1 − êm)} / {êf(1 − êf )} < (1 − p̂)/(2 − p̂)
X if (1 − p̂)/(2 − p̂) ≤ {êm(1 − êm)} / {êf(1 − êf )} < (1 + p̂)/p̂
{m} if (1 + p̂)/p̂ ≤ {êm(1 − êm)} / {êf(1 − êf )} .

(4)

Remark 1. Note that we compare the conditional, not the unconditional, vari-

ances in (3), and so we compare objects like the right hand side of (1) rather than

the right hand side of (2). Since the asymptotic unconditional variance of τ̂ , given



Dealing with limited overlap 7

in (2), depends on the conditional treatment effects τf and τm through the term

E
{

(τX − τP)2}, comparisons of the unconditional variances would make the optimal

set depend on the value of the treatment effects. This has two disadvantages. First,

it makes the optimal set depend on the distribution of the potential outcomes, rather

than solely on the distribution of treatment and covariates, thus opening the door to

potential biases. Secondly, implementing the implied criterion in the unconditional

case would be considerably more difficult in practice because the lack of overlap that

leads to the difficulties in precise estimation of τP implies that some of the condi-

tional treatment effects τx, and thus the unconditional variance, would be difficult to

estimate precisely.

Remark 2. One can also define the population version of the set Â, denoted by

A
∗, as the equivalent of (4) with p̂, êf , and êm replaced by p, ef , and em:

A
∗ =







{f} if {em(1 − em)} / {ef (1 − ef)} < (1 − p)/(2 − p)
X if (1 − p)/(2 − p) ≤ {em(1 − em)} / {ef (1 − ef)} < (1 + p)/p
{m} if (1 + p)/p ≤ {em(1 − em)} / {ef(1 − ef)} .

(5)

The set Â is a natural estimator for A
∗, and as a result τS,Â is a natural estimator for

τS,A∗ . However, we focus on the asymptotic variance of N1/2(τ̂
Â
− τS,Â) rather than

the asymptotic variance of N1/2(τ̂
Â
− τS,A∗); that is, we focus on the uncertainty of

the estimator for the average effect conditional on the set we selected. This greatly

simplifies the subsequent analysis: we can select the sample and then proceed to

estimate the average treatment effect and its uncertainty, ignoring the first stage in

which the sample was selected. In the binary covariate case it is again straightforward

to see why this simplifies the analysis. Denote the estimated conditional variances

for τ̂f , τ̂m and τ̂ by

V̂f =
1

N

σ̂2

êf (1 − êf)(1 − p̂)
, V̂m =

1

N

σ̂2

êm(1 − êm)p̂
,

and

V̂S =
σ̂2

N

{

p̂

êm(1 − êm)
+

1 − p̂

êf(1 − êf)

}

,
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and define

V̂
Â

=







V̂f if {êm(1 − êm)} / {êf(1 − êf )} < ζ(p̂)

V̂S if ζ(p̂) ≤ {êm(1 − êm)} / {êf(1 − êf )} < η(p̂)

V̂m if η(p̂) ≤ {êm(1 − êm)} / {êf(1 − êf)} .

(6)

Then V̂ −1

Â
(τ̂

Â
− τS,Â) −→ N (0, 1) in distribution. In this case, N1/2(τS,Â − τS,A∗) may

in fact diverge, if, for example, one of the inequalities in (6) is an equality so that Â

does not converge to A
∗, and N1/2(τS,Â − τS,A∗) diverges.

In the remainder of the paper, we generalize the above analysis to the case with

a vector of continuously distributed covariates. In that case the set A of subsets of

X is not countable. In addition, for a particular subset A ∈ A there is not a simple

estimator, nor can we calculate exact variances for any estimator. We therefore

compare asymptotic variances for efficient estimators. Instead of solving (3), we

attempt to find the A
∗ that solves

avar
{

N1/2
(

τ̂ eff
A∗ − τS,A∗

)}

= inf
A∈A

avar
{

N1/2
(

τ̂ eff
A

− τS,A

)}

,

where τ̂ eff
A

denotes any semiparametrically efficient estimator for τS,A. For A
∗ the

average treatment effect is at least as accurately estimable as that for any other

subset of the covariate space. This leads to a generalization of (5). Under some

regularity conditions, this problem has a well-defined solution and, under the ad-

ditional assumption of homoskedasticity, these subpopulations have a very simple

characterization, namely the set of covariate values such that the propensity score

is in the closed interval [α, 1 − α], or A
∗ = {x ∈ X|α ≤ e(x) ≤ 1 − α}. The opti-

mal value of the boundary point α is determined by the marginal distribution of the

propensity score, and its calculation is straightforward. We then estimate this set by

Â = {x ∈ X|α̂ ≤ ê(x) ≤ 1 − α̂}, and propose using any of the standard methods for

estimation of, and inference for, average treatment effects, using only the observations

with covariate values in this set, ignoring the uncertainty in the estimation of the set

Â.
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3. Alternative estimands

3·1. Efficiency bounds

Section 3 contains the main results of the paper. We derive the subset of the covari-

ate space that allows for the most precise estimation of the corresponding average

treatment effect.

In this subsection we discuss some results on efficiency bounds for average treat-

ment effects given strong ignorability and regularity conditions involving smoothness.

Define the sample weighted average treatment effect,

τS,ω =

∑N
i=1 τ (Xi)ω(Xi)
∑N

i=1 ω(Xi)
,

with the weight function ω : X 7→ [0,∞). The results in Hahn (1998), Robins &

Rotnitzky (1995), and Hirano et al. (2003) imply that the efficiency bound for τS,ω is

V eff
ω =

1

E
[

{ω(X)}2]E

[

ω(X)2

{

σ2
1(X)

e(X)
+

σ2
0(X)

1 − e(X)

}]

. (7)

These papers also propose efficient estimators that are asymptotically linear with

influence function

ψω(y, w, x) =
ω(x)

E {ω(X)}

{

w
y − µ1(x)

e(x)
− (1 − w)

y − µ0(x)

1 − e(x)

}

,

so that

τ̂ω = τS,ω +
1

N

N
∑

i=1

ψω(Yi,Wi, Xi) + op

(

N−1/2
)

,

and the efficiency bound is the variance of the influence function, V eff
ω = E{ψω(Y,W,X)}2.

3·2. The optimal subpopulation average treatment effect

We now consider the problem of selecting the estimand τS,ω, or equivalently, the

weight function ω(·), that minimizes the asymptotic variance in (7), within the set

of estimands where the weight function ω(x) is an indicator function, ω(x) = 1x∈A;

in the working paper version of this paper we also consider the problem without
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imposing this restriction. Formally, we choose an estimand τS,A by choosing the set

A ⊂ X that minimizes

V eff
A

=
1

{E (1X∈A)}2 E

[

1X∈A

{

σ2
1(X)

e(X)
+

σ2
0(X)

1 − e(X)

}]

.

Defining q(A) = pr(X ∈ A) = E (1X∈A), we can write the objective function as

V eff
A

=
1

q(A)
E

{

σ2
1(X)

e(X)
+

σ2
0(X)

1 − e(X)

∣

∣

∣

∣

X ∈ A

}

. (8)

We seek A = A
∗, that minimizes V eff

A
among all closed subsets A ⊂ X.

Focusing on estimands that average the treatment effect only over a subpopulation

has two effects on the asymptotic variance, pusing it in opposite directions. First, by

excluding units with covariate values outside the set A, one reduces the effective sam-

ple size in expectation from N to Nq(A). This will increase the asymptotic variance

by a factor 1/q(A). Second, by discarding units with high values for σ2
1(X)/e(X) +

σ2
0(X)/{1−e(X)} one can lower the conditional expectation E [σ2

1(X)/e(X)+σ2
0(X)/{1−

e(X)}|X ∈ A]. Optimally choosing A involves balancing these two effects.

Theorem 1. Suppose that Assumptions 1-2 hold, and suppose that the density of

X is bounded, and bounded away from zero, and that the conditional variances of Yi(0)

and Yi(1) are bounded. We consider τS,A where A is a closed subset of X. Then the

optimal subpopulation average treatment effect is τS,A∗, where, if supx∈X
σ2

1(x)/e(x)+

σ2
0(x)/{1 − e(x)} ≤ 2E [σ2

1(X)/e(X) + σ2
0(X)/{1 − e(X)}] , then A

∗ = X and, other-

wise,

A
∗ =

{

x ∈ X

∣

∣

∣

∣

σ2
1(x)

e(x)
+

σ2
0(x)

1 − e(x)
≤

1

α(1 − α)

}

,

where α is a solution to

1

α(1 − α)
= 2E

[

σ2
1(X)

e(X)
+

σ2
0(X)

1 − e(X)

∣

∣

∣

∣

σ2
1(X)

e(X)
+

σ2
0(X)

1 − e(X)
<

1

α(1 − α)

]

.

A sketch of the proof is given in the Appendix.

The result in this theorem simplifies in an interesting way under homoskedasticity.

Let

VH,A =
1

q(A)
E

{

σ2

e(X)
+

σ2

1 − e(X)

∣

∣

∣

∣

X ∈ A

}

, (9)
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be the asymptotic variance under homoskedasticity.

Corollary 1. Suppose that Assumptions 1-2 hold, and suppose that the density

of X is bounded and bounded away from zero. Suppose also that σ2
w(x) = σ2 for all

w ∈ {0, 1} and x ∈ X. Then the optimal subpopulation average treatment effect is

τS,A∗

H
, where

A
∗
H = {x ∈ X |α ≤ e(x) ≤ 1 − α} .

If

sup
x∈X

1

e(x){1 − e(x)}
≤ 2E

[

1

e(X){1 − e(X)}

]

,

then α = 0 and A
∗
H = X. Otherwise, α is a solution to

1

α(1 − α)
= 2E

[

1

e(X){1 − e(X)}

∣

∣

∣

∣

1

e(X){1 − e(X)}
≤

1

α(1 − α)

]

.

This is the key result in the paper. In practice it is more useful than the result in

Theorem 1 for two reasons. First, the optimal set A
∗
H depends only on the marginal

distribution of the propensity score, and so its construction avoids potential biases

associated with using outcome data. Second, the criterion in Corollary 1 is easier to

implement because the propensity score can be precisely estimable, even in settings

with little overlap, whereas the conditional variances that appear in the criterion in

Theorem 1 may not be. Even when homoskedasticity does not hold, the optimal set

according to this criterion may be a useful approximation.

To implement our proposed criterion, one would first estimate the propensity

score. In the second step, one solve for the smallest value α̂ ∈ [0, 1/2] that satisfies

1

α(1 − α)
≤ 2

∑N
i=1

[

1ê(Xi){1−ê(Xi)}≥α(1−α)

/

ê(Xi) {1 − ê(Xi)}
]

∑N
i=1 1ê(Xi){1−ê(Xi)}≥α(1−α)

,

and use the set Â = {x ∈ X| α̂ ≤ ê(x) ≤ 1 − α̂}. Given this set Â one would use

one of the standard methods for estimation of and inference for average treatment

effects, such as those surveyed in Rosenbaum (2001) and Imbens (2004), ignoring the

uncertainty in the estimation of Â.
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3·3. Numerical simulations for optimal estimands when the propensity score follows a

beta distribution

In this section, we assess the implications of the results derived in the previous sections

by presenting simulations for the optimal estimands, under homoskedasticity, when

the true propensity score follows a Beta distribution. For a Beta distribution with

parameters β and γ, the mean is β/(γ + β) ∈ [0, 1], and the variance is βγ/{(γ +

β)2(γ + β + 1)} ∈ [0, 1/4]. We focus on distributions for the true propensity score,

with β ∈ {0.5, 1, 2, 4}, and γ ∈ {β, . . . , 4}. For a given pair of values (β, γ), let

V eff
S (β, γ) denote the asymptotic variance of the efficient estimator for the sample

average treatment effect:

V eff
S (β, γ) = σ2E

{

1

e(X)
+

1

1 − e(X)

∣

∣

∣

∣

e(X) ∼ Be(β, γ)

}

.

In addition, let V eff
S,α(β, γ) denote the asymptotic variance for the efficient estimator for

the sample average treatment effect, where we drop observations with the propensity

score outside the interval [α, 1 − α]:

V eff
S,α(β, γ) = σ2E { 1/ e(X) + 1/ {1 − e(X)}|α ≤ e(X) ≤ 1 − α, e(X) ∼ Be(β, γ)}

pr {α ≤ e(X) ≤ 1 − α| e(X) ∼ Be(β, γ)}

Let α∗ denote the optimal cut-off value that minimizes V eff
S,α(β, γ). For each of the

(β, γ) pairs we report in Table 1 the three ratios

VS(β, γ)

VS,α∗(β, γ)
,

VS,0.01(β, γ)

VS,α∗(β, γ)
,

VS,0.10(β, γ)

VS,α∗(β, γ)
.

There are two main findings. First, the gain from trimming the sample can be sub-

stantial, reducing the asymptotic variance of the average treatment effect estimand

by a factor of up to ten, depending on the distribution of the propensity score. Sec-

ondly, discarding observations with a propensity score outside the interval [0.1, 0.9]

produces variances that are extremely close to those produced with optimally chosen

cut-off values for the range of Beta distributions considered here. In contrast, using

the smaller fixed cut-off value of 0.01 can lead to considerably larger variances than

using the optimal cut-off value.
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4. A re-analysis of data on right heart catheterization

Connors et al. (1996) used a propensity score matching approach to study the effec-

tiveness of right heart catheterization in an observational setting, using data from the

Study to Understand Prognoses and Preferences for Outcomes and Risks of Treat-

ments. Right heart catheterization is a diagnostic procedure used for critically ill

patients. The study collected data on hospitalized adult patients at 5 medical centres

in the U.S.A. Based on information from a panel of experts, a rich set of variables

relating to the decision to perform the right heart catheterization were collected, as

well as detailed outcome data. Detailed information about the study and the nature

of the variables can be found in Connors et al. (1996) and Murphy & Cluff (1990).

Connors et al. (1996) found that, after adjustment for ignorable treatment assign-

ment conditional on a range of covariates, right heart catheterization appeared to

lead to lower survival rates. This conclusion contradicted popular perception among

practitioners that right heart catheterization was beneficial. The primary analysis

in Connors et al. (1996) matched treated and untreated patients on the basis of

propensity score, with each unit matched at most once.

The study consists of data on 5735 individuals, 2184 of them assigned to the

treatment group and the remaining 3551 assigned to the control group. For each

individual we observe treatment status, equal to 1 if right heart catheterization was

applied within 24 hours of admission, and 0 otherwise, the outcome, which is an

indicator for survival at 30 days, and 72 covariates. For summary statistics on the 72

covariates see Connors et al. (1996) and Hirano & Imbens (2001). The two treatment

groups differ on many of the covariates in statistically and substantially significant

ways. We estimate the propensity score, using a logistic model that includes all 72

covariates. Hirano & Imbens (2001) study various methods for selecting subsets of

the covariates. Figure 1 shows the distribution of estimated propensity scores. While

the two groups obviously differ, the support of the estimated propensity scores in

both groups is nearly the entire unit interval.
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Based on the estimated propensity score, we calculate the optimal cut-off value α

in Corrolary 1, obtaining α̂ = 0.1026. Next, we consider three samples, (i) the full

sample, (ii) the set of units with ê(Xi) ∈ [0.1, 0.9], based on the 0.1 rule-of-thumb,

(iii) the optimal set with ê(Xi) ∈ [0.1026, 0.8974]. In Table 2 we report the sample

sizes by treatment status in the [0.1, 0.9] dataset.

Next we estimate the average effect and its variance for each subsample. The

specific estimator we use in each case is a version of the Horvitz-Thompson estimator;

see Hirano et al. (2003) for details of the implementation. First, we re-estimate the

propensity score on the selected sample, using the full set of 72 covariates. Then, we

estimate the average treatment effect as

τ̂ =
N

∑

i=1

WiYi

ê(Xi)

/ N
∑

i=1

Wi

ê(Xi)
−

N
∑

i=1

(1 −Wi)Yi

1 − ê(Xi)

/ N
∑

i=1

1 −Wi

1 − ê(Xi)
.

We estimate the standard errors using the bootstrap, given the sample selected. We

use two specific estimators. First, we simply calculate the standard deviation of the

B bootstrap replications. This estimator is denoted by se(1). Second, given the

ordered B bootstrap estimates, we take the difference between the 0.95×B and the

0.05×B bootstrap estimates and divided this difference by 2 × 1.645 to obtain an

estimate for the standard error. This estimator is denoted by se(2). Note that these

standard error estimators do not impose homoskedasticity, which was only used in

the construction of the optimal set. We use 50 000 bootstrap replications and Table

3 presents the results. For both the [0.1, 0.9] sample and the optimal [0.1026, 0.8974]

sample, the variance drops to approximately 64% of the original variance. Thus, by

dropping 18% of the sample we obtain a sizeable reduction in the variance of 36%.

These results further strengthen the substantive conclusions in Connors et al. (1996)

that right heart catheterization has negative effects on survival.
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Appendix

Proofs

Define

τS,ω(A) =
∑

i:Xi∈A

τ (Xi)ω(Xi)

/

∑

i:Xi∈A

ω(Xi),

for functions ω(·) : X 7→ [0,∞). For estimands of this type consider the minimum

asymptotic variance criterion that includes that considered in Theorem 1 as a special

case:

VS,ω(A) =
E

[

ω(X)21X∈A

{

σ2

1
(X)

e(X)
+

σ2

0
(X)

1−e(X)

}]

[E {ω(X)1X∈A}]
2 . (A1)

We are interested in the choice of set A that minimizes (A1) among the set of all

closed subsets of X. The following theorem provides the characterization. Let f(·)

be the probability density function of the covariate X.

Theorem A1. Suppose fl ≤ f(x) ≤ fu, and σ2(x) ≤ σ2
u for w = 0, 1 and all

x ∈ X, and suppose ω : X 7→ [0,∞) is continuously differentiable. Then the set A
∗

that minimizes (A1) is equal to X if

sup
x∈X

ω(x)

{

σ2
1(x)

e(x)
+

σ2
0(x)

1 − e(x)

}

≤ 2
E

[

ω2(X)
{

σ2

1
(X)

e(X)
+

σ2

0
(X)

1−e(X)

}]

E {ω(X)}
,

and, otherwise,

A
∗ =

{

x ∈ X

∣

∣

∣

∣

ω(x)

{

σ2
1(x)

e(x)
+

σ2
0(x)

1 − e(x)

}

≤ γ

}

,

where γ is a positive solution to

γ = 2
E

[

ω2(X)
{

σ2

1
(X)

e(X)
+

σ2

0
(X)

1−e(X)

}
∣

∣

∣
ω(X)

{

σ2

1
(X)

e(X)
+

σ2

0
(X)

1−e(X)

}

< γ
]

E
[

ω(X)
∣

∣

∣
ω(X)

{

σ2

1
(X)

e(X)
+

σ2

0
(X)

1−e(X)

}

< γ
] .
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Sketch of proof: Define k(x) = σ2
1(x)/e(x)+σ

2
0(x)/{1−e(x)}, f̃X(x) = fX(x)ω(x)/

∫

z
fX(z)ω(z)dz,

and ω̃(x) = ω(x)/
∫

z
fX(z)ω(z)dz, so that k(x) is bounded away from zero and infin-

ity, and continuously differentiable on X. Let X̃ be a random vector with probability

density function f̃X(x) on X, and let q̃(A) = pr(X̃ ∈ A). Then

E {ω̃(X)1X∈A} = pr
(

X̃ ∈ A

)

= q̃(A),

and, similarly,

E

[

ω̃(X)21X∈A

{

σ2
1(X)

e(X)
+

σ2
0(X)

1 − e(X)

}]

= E
{

ω̃(X̃)1X̃∈A
k(X̃)

}

.

Since multiplying ω(x) by a constant does not change the value of the objective

function in (A1), we have

VS,ω(A) = VS,ω̃(A) =
1

[E {ω̃(X)1X∈A}]
2 E

[

ω̃(X)21X∈A

{

σ2
1(X)

e(X)
+

σ2
0(X)

1 − e(X)

}]

=
1

q̃(A)
E

{

ω̃(X̃)k(X̃)
∣

∣

∣
1X̃∈A

}

. (A2)

Thus the question now concerns the set A that minimizes (A2).

The remainder of the proof of Theorem A1 consists of two stages. First, suppose

there is a closed set A such that x ∈ int(A), z /∈ A, and ω̃(z)k(z) < ω̃(x)k(x). Then

we will construct a closed set Ã such that VS,ω̃(Ã) < VS,ω̃(A). This implies that the

optimal set has the form

A
∗ = {x ∈ X|ω̃(x)k(x) ≤ δ},

for some δ. The second step consists of deriving the optimal value for δ.

For the first step define a ball around x with volume ν,

Bν(x) =
{

z ∈ X| ‖z − x‖ ≤ ν1/L2−1/Lπ−1/2Γ(L/2)1/L
}

.

Now we construct the set

Aν =
{

A ∩ Bν/f̃X(x)(x)
}

∪ Bν/f̃X(z)(z).
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For small enough ν,

VS,ω̃(Aν) − VS,ω̃(A)

=
ν

q(A)2

[

E
{

ω̃(X̃)k(X̃)
∣

∣

∣
X̃ ∈ Bν/f̃X(z)(z)

}

− E
{

ω̃(X̃)k(X̃)
∣

∣

∣
X̃ ∈ Bν/f̃X (x)(x)

}]

+ o(ν).

Since E{ω̃(X̃)k(X̃)|X̃ ∈ Bν/f̃X(z)(z)}−E{ω̃(X̃)k(X̃)|X̃ ∈ Bν/f̃X(x)(x)} < 0 if ν ≤ ν0,

the difference VS,ω̃(Aν) − VS,ω̃(A) is negative for small enough ν, which finishes the

first part of the proof.

The question now is to determine the optimal value for δ, given that the optimal

set has the form

Aδ = {x ∈ X|ω̃(x)k(x) ≤ δ}.

Define the random variable Y = ω̃(X̃)k(X̃), with probability density function fY (y).

Then

VS,ω̃(Aδ) =

∫ δ

0
yfY (y)dy

{

∫ δ

0
fY (y)dy

}2 .

Either VS,ω̃(Aδ) is minimized at δ = supx∈X
k(x), or there is an interior minimum

where the first order conditions are satisfied. The latter implies that

δ = 2E
{

ω̃(X̃)k(X̃)
∣

∣

∣
ω̃(X̃)k(X̃) < δ

}

,

and thus

γ = 2E
{

ω(X̃)k(X̃)
∣

∣

∣
ω(X̃)k(X̃) < γ

}

,

for γ = δ
∫

ω(x)fX(x)dx. This in turn implies that

γ = 2
E {ω2(X)k(X) |ω(X)k(X) < γ }

E {ω(X) |ω(X)k(X) < γ }
.

If we substitute back k(x) = σ2
1(x)/e(x) + σ2

0(x)/{1 − e(x)} this implies

γ = 2
E

[

ω2(X)
{

σ2

1
(X)

e(X)
+

σ2

0
(X)

1−e(X)

}
∣

∣

∣
ω(X)

{

σ2

1
(X)

e(X)
+

σ2

0
(X)

1−e(X)

}

< γ
]

E
[

ω(X)
∣

∣

∣
ω(X)

{

σ2

1
(X)

e(X)
+

σ2

0
(X)

1−e(X)

}

< γ
] ,
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as desired. �

Proof of Theorem 1. Substituting ω(x) = 1 into Theorem A1 implies that the

optimal set A
∗ is equal to X if

sup
x∈X

σ2
1(x)

e(x)
+

σ2
0(x)

1 − e(x)
≤ 2E

{

σ2
1(X)

e(X)
+

σ2
0(X)

1 − e(X)

}

,

and, otherwise,

A
∗ =

{

x ∈ X

∣

∣

∣

∣

σ2
1(x)

e(x)
+

σ2
0(x)

1 − e(x)
≤ γ

}

,

where γ is a positive solution to

γ = 2E

{

σ2
1(X)

e(X)
+

σ2
0(X)

1 − e(X)

∣

∣

∣

∣

σ2
1(X)

e(X)
+

σ2
0(X)

1 − e(X)
< γ

}

.

Then define α = 1/2 − (1/4 − 1/γ)1/2 so that γ = (α(1 − α))−1 and

A
∗ =

{

x ∈ X

∣

∣

∣

∣

σ2
1(x)

e(x)
+

σ2
0(x)

1 − e(x)
≤

1

α(1 − α)

}

,

where α is a positive solution to

1

α(1 − α)
= 2E

{

σ2
1(X)

e(X)
+

σ2
0(X)

1 − e(X)

∣

∣

∣

∣

σ2
1(X)

e(X)
+

σ2
0(X)

1 − e(X)
<

1

α(1 − α)

}

. �
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Table 1: Variance ratios for Beta distributions

γ
β 0.5 1.0 2.0 4.0

0.5 VS(γ, β)/VS,α(γ,β)(γ, β) 13.38 11.68 13.71 12.83
VS,0.01(γ, β)/VS,α(γ,β)(γ, β) 1.70 1.64 1.71 1.58
VS,0.10(γ, β)/VS,α(γ,β)(γ, β) 1.00 1.00 1.00 1.04

1.0 VS(γ, β)/VS,α(γ,β)(γ, β) 2.68 2.65 3.36
VS,0.01(γ, β)/VS,α(γ,β)(γ, β) 1.39 1.39 1.47
VS,0.10(γ, β)/VS,α(γ,β)(γ, β) 1.00 1.00 1.01

2.0 VS(γ, β)/VS,α(γ,β)(γ, β) 1.11 1.16
VS,0.01(γ, β)/VS,α(γ,β)(γ, β) 1.09 1.12
VS,0.10(γ, β)/VS,α(γ,β)(γ, β) 1.00 1.00

4.0 VS(γ, β)/VS,α(γ,β)(γ, β) 1.02
VS,0.01(γ, β)/VS,α(γ,β)(γ, β) 1.02
VS,0.10(γ, β)/VS,α(γ,β)(γ, β) 1.00
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Table 2: Subsample sizes for Right Heart Catheterization data

ê(Xi) < 0.1 0.1 ≤ ê(Xi) ≤ 0.9 0.9 < ê(Xi) all

controls 870 2671 10 3551

treated 40 2057 87 2184

All 910 4728 97 5735

Table 3: Estimates for Average Treatment Effects in Right Heart Catheterization
study

Estimate se(1) se(2)

Full Sample -0.0593 0.0166 0.0167

ê(Xi) ∈ [0.1, 0.9] -0.0590 0.0143 0.0143

ê(Xi) ∈ [0.1026, 0.8974] -0.0601 0.0143 0.0144
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Fig. 1. Right heart catheterization study. Propensity score using all covariates for (a) treated and (b) control patients




