V. J. Hotz May 28, 2007

Notes on Willis & Rosen, "Education & Self-Selection"

Model

Two levels of Schooling: A (some College) and B (High School)

Observe earnings at 2 points in life cycle: soon after entrance into labor force & ~ 20 years later.

Expected Earnings:

If person *i* chooses *A* (some College), earnings are:

$$y_{ai}(t) = 0, \quad 0 < t \le S$$

$$y_{ai}(t) = \overline{y}_{ai} \exp[g_{ai}(t-S)], \quad S \le t < \infty$$
(5)

where S is incremental schooling period associated with A over B and t - S is (potential) market work experience.

If person *i* chooses *B* (High School), earnings are:

$$y_{bi}(t) = \overline{y}_{bi} \exp[g_{bi}t], \quad 0 \le t < \infty.$$
(6)

So, earnings prospects of individuals characterized by $(\overline{y}_a, g_a, \overline{y}_b, g_b)$, i.e., initial earnings and rates of growth in each of schooling alternatives.

Present Value of Earnings under A and B, respectively:

$$V_{ai} = \int_{S}^{\infty} y_{ai}(t) \exp(-r_{i}t) dt = \left[\frac{\overline{y}_{ai}}{(r_{i} - g_{ai})}\right] \exp(-r_{i}S)$$
(7)

$$V_{bi} = \int_0^\infty y_{bi}(t) \exp(-r_i t) dt = \frac{\overline{y}_{bi}}{(r_i - g_{bi})},$$
(8)

where r_i is person *i*'s discount rate, with $r_i > g_{ai}$, g_{bi} and W&R ignore direct costs of school.

Selection Rule:

Choose *A* if $V_{ai} > V_{bi}$ and choose *B* if $V_{ai} \le V_{bi}$. Let $I_i = \ln(V_{ai}/V_{bi})$ or, substituting in for V_{ai} and V_{bi} from (5) – (8), we get

$$I_i = \ln \overline{y}_{ai} - \ln \overline{y}_{bi} - r_i S - \ln(r_i - g_{ai}) + \ln(r_i - g_{bi})$$

Use Taylor series approx. to nonlinear terms in above around population means, we get

$$I_i = \alpha_0 + \alpha_1 (\ln \overline{y}_{ai} - \ln \overline{y}_{bi}) + \alpha_2 g_{ai} + \alpha_3 g_{bi} + \alpha_4 r_i$$
(9)

with

$$\alpha_{1} = 1$$

$$\alpha_{2} = \partial I / \partial g_{a} = 1/\overline{r} - \overline{g}_{a} > 0$$

$$\alpha_{3} = \partial I / \partial g_{b} = -1/\overline{r} - \overline{g}_{b} < 0$$

$$\alpha_{4} = -\left[S + \frac{(\overline{g}_{a} - \overline{g}_{b})}{(\overline{r} - \overline{g}_{a})(\overline{r} - \overline{g}_{b})}\right]$$
(10)

Then it follows that selection criteria are:

$$Pr(choose A) = Pr(V_a > V_b) = Pr(I > 0)$$

$$Pr(choose B) = Pr(V_a \le V_b) = Pr(I \le 0)$$
(11)

Earnings & Discount Functions:

$$\ln \overline{y}_{ai} = X_i \beta_a + u_{1i}$$

$$g_{ai} = X_i \gamma_a + u_{2i}$$
(12)

$$\ln \overline{y}_{bi} = X_i \beta_b + u_{3i}$$

$$g_{bi} = X_i \gamma_b + u_{4i}$$
(13)

and

$$r_i = Z_i \delta + u_{5i} \tag{14}$$

Let vector \boldsymbol{u} normally distributed with mean $\boldsymbol{0}$ and $\boldsymbol{\Sigma}$ unrestricted.

Reduced Form:

$$I = \alpha_0 + X [\alpha_1(\beta_a - \beta_b) + \alpha_2 \gamma_a + \alpha_3 \gamma_b] + \alpha_4 Z \delta + \alpha_1(u_1 - u_2) + \alpha_2 u_2 + \alpha_3 u_3 + \alpha_5 u_5$$

$$\equiv W \pi - \varepsilon$$
(15)

where W = [X,Z] and $-\varepsilon = \alpha_1(u_1 - u_2) + \alpha_2 u_2 + \alpha_3 u_3 + \alpha_5 u_5$. Then

$$\Pr(A \text{ is observed}) = \Pr(W\pi > \varepsilon) = F\left(\frac{W\pi}{\sigma_{\varepsilon}}\right)$$
(16)

Observed Earnings & Selection Bias:

$$E\left(\ln \overline{y}_{a} \left| I > 0\right.\right) = X \beta_{a} + \frac{\sigma_{1\varepsilon}}{\sigma_{\varepsilon}} \lambda_{a}$$
(18)

$$E(g_a|I>0) = X\gamma_a + \frac{\sigma_{2\varepsilon}}{\sigma_{\varepsilon}}\lambda_a$$
(19)

$$E\left(\ln \overline{y}_{b} \left| I \le 0\right.\right) = X \beta_{b} + \frac{\sigma_{3\varepsilon}}{\sigma_{\varepsilon}} \lambda_{b}$$

$$\tag{20}$$

$$E(g_b|I \le 0) = X\gamma_b + \frac{\sigma_{4\varepsilon}}{\sigma_{\varepsilon}}\lambda_b$$
(21)

where

$$\lambda_a \equiv -f\left(W\pi/\sigma_{\varepsilon}\right)/F\left(W\pi/\sigma_{\varepsilon}\right) < 0 \tag{17}$$

$$\lambda_{b} \equiv f\left(W\pi/\sigma_{\varepsilon}\right) / \left[1 - F\left(W\pi/\sigma_{\varepsilon}\right)\right] > 0$$
⁽²²⁾

$$\sigma_{j\varepsilon} = \operatorname{cov}(u_j, \varepsilon), \quad j = 1, ..., 4$$

Positive Selection Bias if $\frac{\sigma_{j\varepsilon}}{\sigma_{\varepsilon}} < 0$, j = 1, 2, since $\lambda_a < 0$ and $\frac{\sigma_{j\varepsilon}}{\sigma_{\varepsilon}} > 0$, j = 3, 4, since $\lambda_b > 0$. Positive bias in both *A* and *B* implies **comparative advantage**.

Estimation:

Step 1: Estimate schooling choice (A or B) by probit to obtain $\widehat{\pi/\sigma_{\varepsilon}}$.

Step 2: Using $\widehat{\pi/\sigma_{\varepsilon}}$ to form $\hat{\lambda}_a$ and $\hat{\lambda}_b$ and then estimate

$$\ln \overline{y}_{a} = X \beta_{a} + \beta_{a}^{*} \hat{\lambda}_{a} + \eta_{1}$$

$$g_{a} = X \gamma_{a} + \gamma_{a}^{*} \hat{\lambda}_{a} + \eta_{2}$$

$$\ln \overline{y}_{b} = X \beta_{b} + \beta_{b}^{*} \hat{\lambda}_{b} + \eta_{3}$$

$$g_{b} = X \gamma_{b} + \gamma_{b}^{*} \hat{\lambda}_{b} + \eta_{4}$$
(24)

with data on initial earnings and change in earnings to measure earnings growth rate.

Step 3: Can go back and form structural version of schooling choice probit, to see how well model based on maximizing earnings "fits" the observed schooling choices, i.e.,

$$\Pr(\text{choose } A) = \Pr\left\{\frac{\alpha_0 + \alpha_1 \ln(\widehat{\overline{y}_a}/\overline{y_b} + \alpha_2 \hat{g}_a + \alpha_3 \hat{g}_b + \alpha_4 Z \hat{\delta})}{\sigma_{\varepsilon}} > \frac{\varepsilon}{\sigma_{\varepsilon}}\right\}$$
(26)

where estimated values formed from (24).

	Нібн Ѕсноо	i. (Group B)	More than High School (Group A)		
VARIABLE	Mean	SD	Mean	SD	
Father's ED	8.671	2.966	10.26	3.623	
Father's ED ²	83.99	55.53	118.4	78.09	
DK ED	.0999		.0464		
Manager	.3628		.4954		
Clerk	.1239		.1450		
Foreman	.2238		.1695		
Unskilled	.1492		.0819		
Farmer	.1062		.0720		
DK job	.0177		.0124		
Catholic	.2933		.2138		
Jew	.0405	· / · · ·	.0617		
Old sibs	1.143	1.634	.9035	1.383	
Young sibs	.9381	1.486	.8138	1.266	
Mother works:					
Full 5	.0468		.0486		
Part 5	.0392		.0504		
None 5	.7168		.7507		
Full 14	.0822		.0936		
Part 14	.0708		.0851		
None 14	.6384		.6713		
H.S. shop	.2592		.0908		
Read	20.57	10.17	24.06	11.63	
NR read	.0291		.0128		
Mech	59.24	18.27	58.88	18.96	
NR mech	.0025		0		
Math	18.13	11.82	28.94	17.17	
NR math	.0683		.0188		
Dext	50.04	9.359	50.68	9.811	
NR dext	0		.0071		
Exp	29.33	2.439	24.54	2.907	
Exp^2	866.1	147.1	610.4	147.4	
S13–15			.3106		
S16			.3993		
S20			.0823		
Year 48	46.62	1.584	48.05	1.869	
Year 69	69.11	.3691	69.08	.3437	
$\ln \overline{y}$	8.635	.4107	8.526	.3871	
$\ln y(\bar{t})$	9.326	.4573	9.639	.4904	
g	.0309	.0251	.0535	.0283	
λ_{a}	-1.2870	.2873	3193	.2256	
λ_b	.4666	.3763	1.605	.5212	
No. observations	79	91	2820)	

TABLE 1

Descriptive Statistics

NOTE.---Variables are defined in Appendix A.

S21

		REDUCED FO	rм (16)) Structure (26)		Structure	Structure (29)	
	VARIABLE	Coefficient	t	Coefficient	t	Coefficient	t	
S24	Constant Background:	.0485	.20	.1512	.22	.1030	.17	
	Father's ED	0145	41	0168	54	-0159	- 49	
	Father's ED ²	.0037	2.05	.0038	2.26	0037	2 26	
	DK ED	4059	-3.96	3924	-2.79	-4001	-2.20	
	Manager	.1897	2.17	.1825	2.13	1871	2.91	
	Clerk	.0556	.54	.0561	.59	0554	59	
	Foreman	.0182	.19	.0210	.23	0200	.55	
	Unskilled	0910	85	0948	- 89	0928	- 87	
	Farmer	2039	-2.12	- 2256	-9.97	- 2094	-9.14	
	DK job	-0413	- 19	- 0629	- 99	- 0609	_ 98	
	Catholic	1144	-1.91	- 0982	-1.51	-1083	-1.66	
	Iew	- 0293	- 93	0143	1.51	- 0158	-1.00	
	Old sibs	-0162	- 93	-0169	- 93	0158	14	
	Young sibs	0192	63	.0102	.55	0101	95	
	Mother works	.0122	.05	.0030	.49	.0112	.57	
	Full 5	1030	66	1169	01	1104	70	
	Part 5	.1055	1.49	.1106	.01	.1104	.70	
	Ture 5	.2175	1.42	.2100	1.52	.2150	1.50	
	None 5	.0655	.63	.0677	.65	.0661	.64	
	Full 14	.2898	2.29	.2884	2.30	.2888	2.33	
	Part 14	.2709	2.20	.2768	2.02	.2693	2.03	
	None 14	.1980	1.91	.1990	1.92	.1966	1.92	
	H.S. shop Ability:	4411	-6.14	4397	-3.74	4379	-3.90	
	Read	.0047	1.67					
	NR read	2575	-1.41					
	Mech	0070	-4.29					
	NR mech	-3.0236	-1.04					
	Math	.0244	12.34					
	NR math	7539	-5.75					
	Dext	.0019	.72					
	NR dext	2.2797	.47					
	Earnings:							
	$\ln (\bar{v}_a/\bar{v}_b)$			5.1486	2.25			
,	g_a			138.3850	1.83	7.6632	.11	
ì	\circ g_b			-44.2697	-1.28	71.8981	2.34	
C	$\ln y_a(t)/y_b(t)$					5.1501	2.57	
					2211		0011	
	Observations		3611		3611		3611	
	Limit observations		791		791		791	
	Nonlimit observations		2820		2820		2820	
	-2 In (likelihood ratio)		579.5		568.8		576.6	
	χ^2 degree freedom		28		23		23	

TABLE 2

College Selection Rules: Probit Analysis

NOTE.--t is asymptotic t-statistic: DK: Don't know, dummy variable; NR: No response, dummy variable; other variables are defined in Appendix A.

$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$		Dependent Variable					
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	Regressor	$\frac{\ln \bar{y}_a}{(1)}$	$\frac{\ln \bar{y_b}}{(2)}$	g_a (3)	g_b (4)	$ \ln y_a(\bar{t}) \\ (5) $	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	Constant	8.7124	2.8901	.1261	.2517	10.3370	7.5328
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		(16.51)	(1.37)	(3.90)	(2.11)	(5.52)	(2.08)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	Read	.0009	0019	.0001	.0003	.0027	.0057
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		(1.21)	(-1.17)	(1.11)	(3.20)	(2.80)	(3.28)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	NR read	.0791	.0506	0034	0046	.0033	0402
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		(1.24)	(.58)	(76)	(89)	(.04)	(42)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	Mech	0002	0005	0001	0001	0021	0017
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		(48)	(54)	(-2.16)	(-1.13)	(-3.59)	(-1.73)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	NR mech		.1969		.0002		.2196
$\begin{array}{llllllllllllllllllllllllllllllllllll$			(.69)		(.01)		(.68)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	Math	.0015	0013	.0001	0000	.0030	0019
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		(2.02)	(.74)	(1.18)	(20)	(3.31)	(-1.00)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	NR math	1087	.0562	.0015	.0006	0877	.0712
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		(-1.94)	(.83)	(.38)	(.15)	(-1.24)	(.96)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	Dext	.0008	0019	0000	.0003	.0002	.0036
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		(1.03)	(-1.21)	(78)	(2.77)	(.16)	(2.19)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	NR dext	.0751		0004		.1466	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		(.28)		(02)		(.43)	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	Exp	0523	.4260	0028	0154	0129	.0776
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		(-1.49)	(3.10)	(-1.11)	(-1.93)	(29)	(.53)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	Exp^{2}	.0015	0067	.0000	.0002	0000	0012
Year 48 0020 0156 \dots \dots \dots \dots Year 69 \dots \dots \dots \dots \dots \dots \dots S13-15 $.1288$ \dots 0062 \dots $.0168$ \dots (5.15) (-3.49) $(.52)$ S16 $.0760$ \dots $.0026$ \dots $.1095$ \dots S16 $.0760$ \dots $.0026$ \dots $.1095$ \dots (3.82) (1.79) (4.26) S20 $.1318$ \dots $.0049$ \dots $.2560$ \dots (4.10) (2.13) (6.15) λ_a 1069 \dots $.0058$ \dots $.0206$ λ_b \dots 0558 \dots $.0118$ \dots $.2267$		(2.22)	(-2.95)	(.21)	(1.82)	(01)	(49)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	Year 48	0020	0156				
Year 69 0067 .0039S13-15.1288 0062 0168(5.15)(-3.49)(.52)S16.076000261095(3.82)(1.79)(4.26)S20.13180049 λ_a 10690058 λ_b 05580118		(48)	(-1.72)				
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	Year 69					0067	.0039
$\begin{array}{cccccccccccccccccccccccccccccccccccc$						(26)	(.09)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	S13-15	.1288		0062		.0168	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		(5.15)		(-3.49)		(.52)	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	S16	.0760		.0026		.1095	
S20 .1318 .0049 .2560 (4.10) (2.13) (6.15) λ_a 1069 .0058 .0206 (-3.21) (2.45) (.49) .2267		(3.82)		(1.79)		(4.26)	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	S20	.1318		.0049		.2560	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		(4.10)		(2.13)		(6.15)	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	λ_a	1069		.0058		.0206	
λ_b 055801182267		(-3.21)		(2.45)		(.49)	
	λ_b		0558	• • •	.0118		.2267
(66) (2.39) (2.48)			(66)		(2.39)		(2.48)
R^2 .0750 .0439 .1578 .0513 .0740 .0358	R^2	.0750	.0439	.1578	.0513	.0740	.0358

 TABLE 3

 Structural Earnings Estimates: Equations (24) and (28), OLS

NOTE.—NR: No response, dummy variable; other variables are defined in Appendix A; t-values are shown in parentheses.