V. J. Hotz

May 28, 2007

Notes on
 Willis \& Rosen, "Education \& Self-Selection"

Model

Two levels of Schooling: A (some College) and B (High School)
Observe earnings at 2 points in life cycle: soon after entrance into labor force $\&$ ~ 20 years later.

Expected Earnings.

If person i chooses A (some College), earnings are:

$$
\begin{align*}
& y_{a i}(t)=0, \quad 0<t \leq S \\
& y_{a i}(t)=\bar{y}_{a i} \exp \left[g_{a i}(t-S)\right], \quad S \leq t<\infty \tag{5}
\end{align*}
$$

where S is incremental schooling period associated with A over B and $t-S$ is (potential) market work experience.

If person i chooses B (High School), earnings are:

$$
\begin{equation*}
y_{b i}(t)=\bar{y}_{b i} \exp \left[g_{b i} t\right], \quad 0 \leq t<\infty . \tag{6}
\end{equation*}
$$

So, earnings prospects of individuals characterized by $\left(\bar{y}_{a}, g_{a}, \bar{y}_{b}, g_{b}\right)$, i.e., initial earnings and rates of growth in each of schooling alternatives.

Present Value of Earnings under A and B, respectively:

$$
\begin{gather*}
V_{a i}=\int_{S}^{\infty} y_{a i}(t) \exp \left(-r_{i} t\right) d t=\left[\frac{\bar{y}_{a i}}{\left(r_{i}-g_{a i}\right)}\right] \exp \left(-r_{i} S\right) \tag{7}\\
V_{b i}=\int_{0}^{\infty} y_{b i}(t) \exp \left(-r_{i} t\right) d t=\frac{\bar{y}_{b i}}{\left(r_{i}-g_{b i}\right)} \tag{8}
\end{gather*}
$$

where r_{i} is person i 's discount rate, with $r_{i}>g_{a i}, g_{b i}$ and $\mathrm{W} \& \mathrm{R}$ ignore direct costs of school.

Selection Rule:
Choose A if $V_{a i}>V_{b i}$ and choose B if $V_{a i} \leq V_{b i}$. Let $I_{i}=\ln \left(V_{a i} / V_{b i}\right)$ or, substituting in for $V_{a i}$ and $V_{b i}$ from (5) - (8), we get

$$
I_{i}=\ln \bar{y}_{a i}-\ln \bar{y}_{b i}-r_{i} S-\ln \left(r_{i}-g_{a i}\right)+\ln \left(r_{i}-g_{b i}\right)
$$

Use Taylor series approx. to nonlinear terms in above around population means, we get

$$
\begin{equation*}
I_{i}=\alpha_{0}+\alpha_{1}\left(\ln \bar{y}_{a i}-\ln \bar{y}_{b i}\right)+\alpha_{2} g_{a i}+\alpha_{3} g_{b i}+\alpha_{4} r_{i} \tag{9}
\end{equation*}
$$

with

$$
\begin{align*}
& \alpha_{1}=1 \\
& \alpha_{2}=\partial I / \partial g_{a}=1 / \bar{r}-\bar{g}_{a}>0 \\
& \alpha_{3}=\partial I / \partial g_{b}=-1 / \bar{r}-\bar{g}_{b}<0 \tag{10}\\
& \alpha_{4}=-\left[S+\frac{\left(\bar{g}_{a}-\bar{g}_{b}\right)}{\left(\bar{r}-\bar{g}_{a}\right)\left(\bar{r}-\bar{g}_{b}\right)}\right]
\end{align*}
$$

Then it follows that selection criteria are:

$$
\begin{align*}
& \operatorname{Pr}(\text { choose } A)=\operatorname{Pr}\left(V_{a}>V_{b}\right)=\operatorname{Pr}(I>0) \tag{11}\\
& \operatorname{Pr}(\text { choose } B)=\operatorname{Pr}\left(V_{a} \leq V_{b}\right)=\operatorname{Pr}(I \leq 0)
\end{align*}
$$

Earnings \& Discount Functions:

$$
\begin{align*}
\ln \bar{y}_{a i} & =X_{i} \beta_{a}+u_{1 i} \tag{12}\\
g_{a i} & =X_{i} \gamma_{a}+u_{2 i} \\
\ln \bar{y}_{b i} & =X_{i} \beta_{b}+u_{3 i} \tag{13}\\
g_{b i} & =X_{i} \gamma_{b}+u_{4 i}
\end{align*}
$$

and

$$
\begin{equation*}
r_{i}=Z_{i} \delta+u_{5 i} \tag{14}
\end{equation*}
$$

Let vector \boldsymbol{u} normally distributed with mean $\mathbf{0}$ and Σ unrestricted.

Reduced Form:

$$
\begin{align*}
I= & \alpha_{0}+X\left[\alpha_{1}\left(\beta_{a}-\beta_{b}\right)+\alpha_{2} \gamma_{a}+\alpha_{3} \gamma_{b}\right]+\alpha_{4} Z \delta+\alpha_{1}\left(u_{1}-u_{2}\right) \\
& +\alpha_{2} u_{2}+\alpha_{3} u_{3}+\alpha_{5} u_{5} \tag{15}\\
\equiv & W \pi-\varepsilon
\end{align*}
$$

where $W=[X, Z]$ and $-\varepsilon=\alpha_{1}\left(u_{1}-u_{2}\right)+\alpha_{2} u_{2}+\alpha_{3} u_{3}+\alpha_{5} u_{5}$. Then

$$
\begin{equation*}
\operatorname{Pr}(A \text { is observed })=\operatorname{Pr}(W \pi>\varepsilon)=F\left(\frac{W \pi}{\sigma_{\varepsilon}}\right) \tag{16}
\end{equation*}
$$

Observed Earnings \& Selection Bias:

$$
\begin{align*}
& E\left(\ln \bar{y}_{a} \mid I>0\right)=X \beta_{a}+\frac{\sigma_{1 \varepsilon}}{\sigma_{\varepsilon}} \lambda_{a} \tag{18}\\
& E\left(g_{a} \mid I>0\right)=X \gamma_{a}+\frac{\sigma_{2 \varepsilon}}{\sigma_{\varepsilon}} \lambda_{a} \tag{19}\\
& E\left(\ln \bar{y}_{b} \mid I \leq 0\right)=X \beta_{b}+\frac{\sigma_{3 \varepsilon}}{\sigma_{\varepsilon}} \lambda_{b} \tag{20}\\
& E\left(g_{b} \mid I \leq 0\right)=X \gamma_{b}+\frac{\sigma_{4 \varepsilon}}{\sigma_{\varepsilon}} \lambda_{b} \tag{21}
\end{align*}
$$

where

$$
\begin{gather*}
\lambda_{a} \equiv-f\left(W \pi / \sigma_{\varepsilon}\right) / F\left(W \pi / \sigma_{\varepsilon}\right)<0 \tag{17}\\
\lambda_{b} \equiv f\left(W \pi / \sigma_{\varepsilon}\right) /\left[1-F\left(W \pi / \sigma_{\varepsilon}\right)\right]>0 \tag{22}\\
\sigma_{j \varepsilon}=\operatorname{cov}\left(u_{j}, \varepsilon\right), \quad j=1, \ldots, 4 .
\end{gather*}
$$

Positive Selection Bias if $\frac{\sigma_{j \varepsilon}}{\sigma_{\varepsilon}}<0, j=1,2$, since $\lambda_{a}<0$ and $\frac{\sigma_{j \varepsilon}}{\sigma_{\varepsilon}}>0, j=3,4$, since $\lambda_{b}>0$. Positive bias in both A and B implies comparative advantage.

Estimation:

Step 1: Estimate schooling choice $(A$ or $B)$ by probit to obtain $\widehat{\pi / \sigma_{\varepsilon}}$.
Step 2: Using $\widehat{\pi / \sigma_{\varepsilon}}$ to form $\hat{\lambda}_{a}$ and $\hat{\lambda}_{b}$ and then estimate

$$
\begin{align*}
\ln \bar{y}_{a} & =X \beta_{a}+\beta_{a}^{*} \hat{\lambda}_{a}+\eta_{1} \\
g_{a} & =X \gamma_{a}+\gamma_{a}^{*} \hat{\lambda}_{a}+\eta_{2} \tag{24}\\
\ln \bar{y}_{b} & =X \beta_{b}+\beta_{b}^{*} \hat{\lambda}_{b}+\eta_{3} \\
g_{b} & =X \gamma_{b}+\gamma_{b}^{*} \hat{\lambda}_{b}+\eta_{4}
\end{align*}
$$

with data on initial earnings and change in earnings to measure earnings growth rate.

Step 3: Can go back and form structural version of schooling choice probit, to see how well model based on maximizing earnings "fits" the observed schooling choices, i.e.,

$$
\begin{equation*}
\operatorname{Pr}(\text { choose } A)=\operatorname{Pr}\left\{\frac{\alpha_{0}+\alpha_{1} \ln \left(\overline{\bar{y}_{a} / \bar{y}_{b}}+\alpha_{2} \hat{g}_{a}+\alpha_{3} \hat{g}_{b}+\alpha_{4} Z \hat{\delta}\right)}{\sigma_{\varepsilon}}>\frac{\varepsilon}{\sigma_{\varepsilon}}\right\} \tag{26}
\end{equation*}
$$

where estimated values formed from (24).

TABLE 1
Descriptive Statistics

Variable	High School. (Group B)		More than High School (Group A)	
	Mean	SD	Mean	SD
Father's ED	8.671	2.966	10.26	3.623
Father's ED ${ }^{2}$	83.99	55.53	118.4	78.09
DK ED	. 0999 0464	. .
Manager	. 36284954	
Clerk	. 1239	. .	.1450	
Foreman	. 2238		. 1695	
Unskilled	. 1492		. 0819	
Farmer	. 1062	. .	. 0720	
DK job	.O177	. .	. 0124	. .
Catholic	. 2933	. .	.2138	
Jew	.0405		.0617	
Old sibs	1.143	1.634	. 9035	1.383
Young sibs	. 9381	1.486	.8138	1.266
Mother works:				
Full 5	. 0468 0486	. .
Part 5	. 0392	. .	. 0504	. .
None 5	. 7168	.	.7507	. .
Full 14	. 0822	. .	. 0936	.
Part 14	. 0708	. .	. 0851	. . .
None 14	. 6384		. 6713	
H.S. shop	. 2592	. .	. 0908	
Read	20.57	10.17	24.06	11.63
NR read	. 0291		. 0128	
Mech	59.24	18.27	58.88	18.96
NR mech	. 0025	. .	0	
Math	18.13	11.82	28.94	17.17
NR math	. 0683		. 0188	
Dext	50.04	9.359	50.68	9.811
NR dext	0	-••	. 0071	
Exp	29.33	2.439	24.54	2.907
Exp ${ }^{2}$	866.1	147.1	610.4	147.4
S13-15 3106	. . .
S163993	-••
S20			. 0823	. .
Year 48	46.62	1.584	48.05	1.869
Year 69	69.11	. 3691	69.08	. 3437
$\ln \bar{v}_{-}$	8.635	.4107	8.526	. 3871
$\ln y(\bar{t})$	9.326	.4573	9.639	.4904
g	. 0309	. 0251	. 0535	. 0283
$\lambda_{\mathbf{a}}$	-1.2870	. 2873	$-.3193$. 2256
λ_{b}	.4666	. 3763	1.605	. 5212
No. observations			282	

Note.-Variables are defined in Appendix A.

S2 1

TABLE 2
College Selection Rules: Probit Analysis

[^0]TABLE 3
Structural Earnings Estimates: Equations (24) and (28), OLS

Regressor	Depmndent Variable					
	$\ln \bar{y}_{a}$ (1)	$\ln \bar{y}_{b}$ (2)	g_{a} (3)	g_{b} (4)	$\ln y_{a}(\bar{t})$ (5)	$\ln y_{b}(\bar{t})$ (6)
Constant	$\begin{aligned} & 8.7124 \\ & (16.51) \end{aligned}$	$\begin{aligned} & 2.8901 \\ & (1.37) \end{aligned}$	$\begin{gathered} .1261 \\ (3.90) \end{gathered}$	$\begin{aligned} & .2517 \\ & (2.11) \end{aligned}$	$\begin{aligned} & 10.3370 \\ & (5.52) \end{aligned}$	$\begin{aligned} & 7.5328 \\ & (2.08) \end{aligned}$
Read	$\begin{aligned} & .0009 \\ & (1.21) \end{aligned}$	$\begin{gathered} -.0019 \\ (-1.17) \end{gathered}$	$\begin{aligned} & .0001 \\ & (1.11) \end{aligned}$	$\begin{aligned} & .0003 \\ & (3.20) \end{aligned}$	$\begin{aligned} & .0027 \\ & (2.80) \end{aligned}$	$\begin{aligned} & .0057 \\ & (3.28) \end{aligned}$
NR read	$\begin{gathered} .0791 \\ (1.24) \end{gathered}$	$\begin{aligned} & .0506 \\ & (.58) \end{aligned}$	$\begin{gathered} -.0034 \\ (-.76) \end{gathered}$	$\begin{aligned} & -.0046 \\ & (-.89) \end{aligned}$	$\begin{aligned} & .0033 \\ & (.04) \end{aligned}$	$\begin{aligned} & -.0402 \\ & (-.42) \end{aligned}$
Mech	$\begin{aligned} & -.0002 \\ & (-.48) \end{aligned}$	$\begin{gathered} -.0005 \\ (-.54) \end{gathered}$	$\begin{gathered} -.0001 \\ (-2.16) \end{gathered}$	$\begin{gathered} -.0001 \\ (-1.13) \end{gathered}$	$\begin{gathered} -.0021 \\ (-3.59) \end{gathered}$	$\begin{gathered} -.0017 \\ (-1.73) \end{gathered}$
NR mech		$\begin{aligned} & .1969 \\ & (.69) \end{aligned}$		$\begin{aligned} & .0002 \\ & (.01) \end{aligned}$	(-3.59)	$\begin{aligned} & .2196 \\ & (.68) \end{aligned}$
Math	$\begin{aligned} & .0015 \\ & (2.02) \end{aligned}$	$\begin{gathered} -.0013 \\ (.74) \end{gathered}$	$\begin{aligned} & .0001 \\ & (1.18) \end{aligned}$	$\begin{aligned} & -.00000 \\ & (-.20) \end{aligned}$	$\begin{gathered} .0030 \\ (3.31) \end{gathered}$	$\begin{gathered} -.0019 \\ (-1.00) \end{gathered}$
NR math	$\begin{gathered} -.1087 \\ (-1.94) \end{gathered}$	$\begin{aligned} & .0562 \\ & (.83) \end{aligned}$	$\begin{aligned} & .0015 \\ & (.38) \end{aligned}$	$\begin{aligned} & .0006 \\ & (.15) \end{aligned}$	$\begin{gathered} -.0877 \\ (-1.24) \end{gathered}$	$\begin{aligned} & .0712 \\ & (.96) \end{aligned}$
Dext	$\begin{aligned} & .0008 \\ & (1.03) \end{aligned}$	$\begin{gathered} -.0019 \\ (-1.21) \end{gathered}$	$\begin{gathered} -.0000 \\ (-.78) \end{gathered}$	$\begin{aligned} & .0003 \\ & (2.77) \end{aligned}$	$\begin{aligned} & .0002 \\ & (.16) \end{aligned}$	$\begin{aligned} & .0036 \\ & (2.19) \end{aligned}$
NR dext	$\begin{aligned} & .0751 \\ & (.28) \end{aligned}$		$\begin{aligned} & -.0004 \\ & (-.02) \end{aligned}$...	$\begin{aligned} & .1466 \\ & (.43) \end{aligned}$	
Exp	$\begin{gathered} -.0523 \\ (-1.49) \end{gathered}$	$\begin{gathered} .4260 \\ (3.10) \end{gathered}$	$\begin{gathered} -.0028 \\ (-1.11) \end{gathered}$	$\begin{gathered} -.0154 \\ (-1.93) \end{gathered}$	$\begin{gathered} -.0129 \\ (-.29) \end{gathered}$	$\begin{aligned} & .0776 \\ & (.53) \end{aligned}$
Exp^{2}	$\begin{gathered} .0015 \\ (2.22) \end{gathered}$	$\begin{gathered} -.0067 \\ (-2.95) \end{gathered}$	$\begin{aligned} & .00000 \\ & (.21) \end{aligned}$	$\begin{gathered} .0002 \\ (1.82) \end{gathered}$	$\begin{aligned} & -.0000 \\ & (-.01) \end{aligned}$	$\begin{gathered} -.0012 \\ (-.49) \end{gathered}$
Year 48	$\begin{gathered} -.0020 \\ (-.48) \end{gathered}$	$\begin{aligned} & -.0156 \\ & (-1.72) \end{aligned}$	(21)	(((
Year 69	. \cdot	\cdots	$\begin{aligned} & -.0067 \\ & (-.26) \end{aligned}$	$\begin{aligned} & .0039 \\ & (.09) \end{aligned}$
S13-15	$\begin{aligned} & .1288 \\ & (5.15) \end{aligned}$	\ldots	$\begin{gathered} -.0062 \\ (-3.49) \end{gathered}$	\ldots	$\begin{aligned} & .0168 \\ & (.52) \end{aligned}$	(
S16	$\begin{gathered} .0760 \\ (3.82) \end{gathered}$.	${ }_{(1.79)}^{.0026}$	\ldots	$\begin{aligned} & .1095 \\ & (4.26) \end{aligned}$	\cdots
S20	$\begin{aligned} & .1318 \\ & (4.10) \end{aligned}$	- \cdot	$\begin{aligned} & .0049 \\ & (2.13) \end{aligned}$.	$\begin{gathered} .2560 \\ (6.15) \end{gathered}$	\ldots
λ_{a}	$\begin{gathered} -.1069 \\ (-3.21) \end{gathered}$. \cdot	$\begin{aligned} & .0058 \\ & (2.45) \end{aligned}$...	$\begin{aligned} & .0206 \\ & (.49) \end{aligned}$	\cdots
λ_{b}	,	$\begin{aligned} & -.0558 \\ & (-.66) \end{aligned}$...	$\begin{aligned} & .0118 \\ & (2.39) \end{aligned}$,	$\begin{aligned} & .2267 \\ & (2.48) \end{aligned}$
R^{2}	. 0750	. 0439	. 1578	. 0513	. 0740	. 0358

Notr.-NR: No response, dummy variable; other variables are defined in Appendix A; t-values are shown in parentheses.

[^0]: Note.-t is asymptotic t-statistic: DK: Don't know, dummy variable; NR: No response, dummy variable; other variables are defined in Appendix A

