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Abstract

Booming shale gas development has been blamed for dramatic rises in housing

rental costs, with important distributional consequences. We consider the ef-

fect of rapid shale development on Pennsylvania census tract rents, using New

York tracts (located on the Marcellus shale formation but under a fracking

moratorium) as a control group. We develop a new estimator that combines

matching and quantile regression techniques. Results suggest that the impact

of shale gas development on rents varies dramatically over the distribution of

unobservables and that large effects are confined to only the upper tail of the

distribution.
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I Introduction

The recent technological developments of directional (horizontal) drilling and hy-

draulic fracturing (fracking) have allowed previously inaccessible shale oil and gas

deposits to radically alter the United States energy markets. Combined, the tech-

niques have allowed resource producers to profitably extract hydrocarbon resources

from shale rock formations. As a consequence, drilling activity in the U.S. has in-

creased dramatically over the last seven years. Most new drilling has been concen-

trated on a few shale formations: the Marcellus shale in Pennsylvania, the Bakken

shale in North Dakota, and the Eagle Ford and Barnett shales in Texas. The rapid

increase in drilling activity in previously remote areas has exhibited similarities to

classic natural resource booms. Local economies have undergone rapid changes, not

all of them positive.

The aim of this paper is to empirically examine the effect that the fracking boom

has had on housing rental markets in Pennsylvania. Pennsylvania is home to much

of the Marcellus shale formation, which stretches from southeast Ohio across West

Virginia and Pennsylvania into upstate New York. It is the largest estimated source of

recoverable natural gas in the United States. Much of the Marcellus’ drilling activity

has been concentrated in Pennsylvania, where fracking and horizontal drilling arrived

on the scene in late 2005. Growth of wells in the area has been tremendous in the

years since: Pennsylvania saw four new wells spudded in 2005 compared to 1,964 in

2011. Drilling of new wells has grown at a compounded annual rate of more than

250% through 2012, despite concurrent headwinds of a wider economic recession and

a steep decline in natural gas prices.1

Rents are an interesting economic variable in their own right, but also for the for-

mative role they play in the pricing of real estate. In an asset-pricing framework,

the value of a house is comprised of the discounted stream of future rents an owner

will receive and the expected future price. An analysis of changes in rents there-

fore complements studies of housing prices by providing a more complete picture of

the real estate market. If, for example, housing prices are found to decline while

rents increase, one might infer that the expected sales price of the house has fallen

drastically.

1Authors’ calculations. Data from PADEP and DCNR, detailed in Section III.
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Rent increases may also be detrimental from a social welfare point of view. If marginal

renters become homeless and stretch the safety net resources of the local municipality,

landlords will benefit at the expense of the tax base. In a similar fashion, rent increases

are likely to have distributional consequences: renters tend to have less wealth than

homeowners and are less able to cope with the shock of increased cost of shelter.

Additionally, expensive rental housing will require gas firms to pay their workers more,

increasing the cost of extracting gas. Finally, large shifts in rents have the potential

to cause economic damage over the long term. Residential investment might increase

as a result of the boom, only to leave investors holding a loss as the well-workers move

on and the surge in demand subsides. Relatedly, higher volatility in rents will reduce

residential investment below the socially optimal level if the investors are risk-averse.

Anecdotes surrounding rent increases abound in the media. For instance, Detrow

(2013) reports that rents in Towanda, PA rose from $300 per month in 2008 to more

than $1,000 per month in 2013, a nominal increase of 233%! These higher rents were

accompanied by additional crime, heavy truck traffic, and increased demand for local

retail services. The issue has even prompted local municipalities to commission pub-

lic reports. Boyd et al. (2013) discuss the impacts of the drilling boom on housing

markets in five Ohio counties: among their findings are higher rents, pricing marginal

renters out of the market and into substandard alternatives. Williamson and Kolb

(2011), using interviews from six Pennsylvania counties, find widely heterogeneous

responses in rental markets ranging from no change to drastic shortages and price

increases upwards of 200% in the span of a few years. They observe that a con-

temporaneous wave of foreclosures has contributed to an increase in rental demand

and that supply has responded slowly.2 The study mentions only a single company-

provided housing facility in Pennsylvania, a solution that is much more common in

many western states.3

In contrast to these negative consequences from shale gas development, industry

sources tend to tout economic benefits. Industry-sponsored studies stress higher em-

ployment and income, along with generous estimates of spillover effects including

2Although some plans had been discussed and implemented, builders face a variety of regulatory,
financial and infrastructural hurdles. Their longer investment horizon also requires that the demand
shifts are not transitory (Williamson and Kolb, 2011).

3This alternative may be preferred by employers due to lower costs, but is not necessarily desirable
from the community’s standpoint due to the potential for other social issues.
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increases in demand for local goods and services (see Kinnaman (2011) for this dis-

cussion). Any positive economic effects are channeled primarily through increased

employment, and this is likely only in the short run. The process of drilling a new

well is much more labor intensive than operating an existing well. Brundage et al.

(2011) estimate that the drilling of one new well provides the equivalent of 13.1 full

time jobs to 420 people across 150 occupations for six months to a year. However,

the labor requirements of operating a drilled well creates an estimated 0.19 full time-

equivalent positions. Therefore impacts on rental prices are likely only short-run

effects felt while wells are being drilled.

The challenges of municipal planning in the face of the shale boom are exacerbated

by the possibility of a subsequent bust. The geology of the Marcellus shale has meant

that much of Pennsylvania’s activity has been concentrated in the north/northeast

region of the state (see Figure 1) – a sparsely populated area before the boom. Zrem-

ski (2014) observes a similar phenomenon in nearby Tioga County PA, where the

unemployment rate began to increase from its low of 5.8% in October 2011 as drilling

activity slowed.
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FIGURE 1
Map of Drilled Wells and the Marcellus Formation in Pennsylvania

Prior academic research has examined many of these purported economic effects of the

drilling booms. The subjects of investigation include housing values (Muehlenbachs

et al., 2014; Gopalakrishnan and Klaiber, 2014), employment effects (Weber, 2012;

DeLeire et al., 2014; Marchand, 2012), labor market spillovers (Considine et al., 2011),

and the (net) effects on local governmental finance (Raimi and Newell, 2014). Despite

numerous anecdotal accounts of prohibitive increases in rents, no careful empirical

investigation has yet been presented on the issue.

We use census tract level data from Pennsylvania and New York to identify the

effects of drilling on rental prices. The selected New York tracts serve as a particularly

appealing control group for the Pennsylvania tracts, as New York’s bordering counties

are also on the Marcellus shale and are very similar culturally and socio-economically

to the counties in northern Pennsylvania. However, during the period of study New

York had enacted a moratorium on fracking which kept the boom on the Pennsylvania

side of the border (the ban has since been passed as a state law). This regulatory

discontinuity neatly splits the tracts under consideration into treatment and control
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groups.4 The exogenous variation in drilling further allows for a causal interpretation

of the results.

Our results illustrate that reports of large spikes in housing rents due to fracking by

popular media sources are not generalizable. The estimated effect on rents of drilling

proximate wells is statistically significant and on the order of a $100 per month in-

crease - a result that is robust across multiple specifications. Quantile regression

techniques produce some evidence of significantly heterogeneous effects. Even at the

highest quantiles however, estimated effects of $250+ per month fall short of the sen-

sational reports outlined above, suggesting that the reports are outliers. The results

are relevant for local policy makers seeking to understand and minimize the disruptive

impact of drilling. The expected impact of drilling proximate wells falls significantly

short of the most alarming anecdotes, and is even lower at lower conditional rent

quantiles (interpreted generally as “loose” rental markets).

The paper proceeds in the following manner. Section II surveys the relevant prior

literature on resource booms and fracking. Section III describes the data that are

used in the study. Section IV describes the empirical strategy and presents results.

Section V concludes and discusses potential topics for future research.

II Related Literature

This paper builds primarily upon prior empirical analyses of natural gas and similar

resource booms. Many landmark studies have sought to quantify income or employ-

ment spillovers or to understand the effect of a resource boom on local economic

growth. Recent papers have examined real estate transactions and employed hedonic

techniques to quantify the (dis)amenity of drilling. This paper makes two contribu-

tions to the literature. The first is an empirical analysis focused exclusively on rental

markets. The second contribution is econometric: we combine quantile regression and

matching techniques in an extension of prior applications to panel data. The results

allow us to identify significant heterogeneity in the effects of fracking on rents.

The economics of local natural resources booms have been studied since Corden and

4Our analysis depends on the stable unit treatment value assumption (SUTVA), i.e. that cross-
border spillovers do not exist. The dataset used in estimation will reflect this assumption, with the
closest New York tracts being discarded.
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Neary (1982). A large literature that includes Carrington (1996), Black et al. (2005),

Weber (2012), and Marchand (2012) has considered the effect of booms on local

employment and incomes. All find evidence of modest spillovers, many of which are

transitory.5 Carrington (1996) finds that the interelasticity of labor across sectors is

much lower than the elasticity of labor supply in the energy sector. Similarly, Black

et al. (2005) find small positive spillover effects on sectors that produce locally traded

goods (e.g. services), but note that differences in poverty rates disappear after the

coal bust. The modest spillovers found by Marchand (2012) and Weber (2012) call

into question the assumptions of the industry-sponsored studies.6

Three recent studies have looked at the effect of the current fracking boom on the

housing market in Pennsylvania. Using a hedonic framework, Muehlenbachs, Spiller

and Timmins (2014) find zero or slightly positive impacts of wells on property prices

at a close geographical range. The effect becomes large and negative when the home’s

water is sourced directly from the ground. Gopalakrishnan and Klaiber (2014) find

smaller negative results, using data from only Washington County, Pennsylvania. The

negative effects contradict the prediction of Corden and Neary (1982)’s model, and

suggest that residents’ housing prices are capitalizing disamenities that arise from

fracking. Both papers exploit geo-coded real estate transactions data that enable the

authors to calculate the distance of individual houses from wells. Taken together, the

results suggest that the housing market’s response to drilling is not straightforward

and merits further investigation.

James and James (2014) reinforce this conclusion. A micro-level hedonic analysis

for Weld County, Colorado finds significant decreases in home value associated with

proximity to wells. Using county-level data for the entire U.S., they find that median

house prices decreased more slowly in shale counties than non-shale counties. However

using the same data they also find that median rental rates and income increased more

quickly in the same counties. The direct consideration of rental rate effects is unique

in the budding literature, though it is ancillary in the context of the study on house

5See also DeLeire et al. (2014) which studies the same question in the context of this paper, and
develops a parallel quantile-matching technique.

6Indeed, Kinnaman (2011) examines the assumptions underlying Considine et al. (2010, 2011)
and CBER (2008), and notes the studies’ links to industry. Among other things, the two Considine
et al. papers assume that all royalty windfalls are spent in-state in the year received and that 95%
of industry expenditures are spent in PA.
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prices. The authors estimate that a county’s location on shale increases the rental

growth rate by 0.2% to 0.4% annually - a much smaller figure than reported by the

press.

This paper makes two contributions to the literature on shale gas focusing specifically

on rents. First, our data are available at the census tract level, which represents a

significant improvement over James and James’ county-level study of rents. Unfortu-

nately, sources of rental data are not as rich as those for real estate transactions, so

we cannot match the detail achieved by Muehlenbachs et al. (2014) and Gopalakrish-

nan and Klaiber (2014). Instead, we use the median of the within-tract distribution

of rents. Moreover, whereas James and James (2014) estimate an “intent to treat”

estimator using the presence of shale within a county, we estimate effects at the cen-

sus tract level using broadly defined proximity to shale gas development. Our second

contribution is an econometric extension: the application of a fixed-effect quantile

regression estimator to the matching framework. This approach allows us to consider

the effect of fracking on rents at many points along the conditional distribution and

identify heterogeneity in effects that will be relevant to local policymakers.

III Data

In order to investigate the effects of drilled wells on rental markets, data were drawn

from two primary sources. Rents and other demographic variables are drawn from the

U.S. Census’ American Community Survey (ACS), while data on fracking and well

drilling come from a proprietary dataset compiled for Muehlenbachs et al. (2014).

III.I Sources

The dataset on drilling and well characteristics is that analyzed in Muehlenbachs

et al. (2014). The two primary data sources are the Pennsylvania Department of

Environmental Protection (PADEP) and the Department of Conservation and Natu-

ral Resources (DCNR) Well Information System (the Pennsylvania Internet Record

Imaging System/Wells Information System [PA*IRIS/WIS]). The compiled dataset

contains information on a number of potentially important features about the wells:

the date the permit was issued (for both drilled and undrilled wells), the date the

well was drilled, the corporate operator, whether the well is horizontal or vertical,
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and some information about the well’s subsequent productivity. The richness of this

data allows for us to consider multiple ways in which fracking might impact the

rental market. Further details on the drilling dataset and its creation can be found

in Muehlenbachs et al. (2014).

Given the richness of the well dataset and the local nature of housing markets, we

study the effect of drilling at the census tract level. Our source of data on rents at

the census tract level comes from the Census’ ACS dataset, which is released at the

census tract level annually in five year moving averages. As the dependent variable of

interest, we use the median rent variable from the 2008-2012 wave of ACS data. We

then create a panel dataset using similar data from the 2000 Census, deflating rents

by the CPI’s housing index (2008-2012 rents are deflated by the five-year average of

the index). While de minimus drilling was present in Pennsylvania prior to 2000, no

wells were drilled in 2000. Thus for the panel dataset, all of the well variables are

assumed to equal 0 for the year 2000.

III.II Sample Selection

To match the timing of the ACS data, we consider wells that were drilled in Penn-

sylvania from the beginning of 2008 to the end of 2012.7 Because workers for a well

might endure a significant commute (Boyd et al., 2013), we associate a well with

a census tract using the conservative buffer of 50km (31 miles) around each tract’s

centroid.

Once we have associated the wells with each census tract, we ignore the timing of

drilling and treat wells drilled at any point during the period 2008-2012 homoge-

neously.8 Ideally a time series of rental data would allow us to identify both short-

and long-term treatment effects of wells, but as we observe only a five-year moving

average of rents we are forced to treat a well drilled in any of the five years equally.

Because wells drilled might lead to only a short-term spike in rents, this pooling of

data may lead to attenuation bias. Our results thus serve as a lower bound of the

true effect of drilling activity on concurrent housing rents.

7These 5 years include 98% of all Pennsylvania wells drilled from 2000 to 2012.
8Measures of the “intensity” of drilling, i.e. the temporal concentration of wells drilled, were

created as well. Ultimately these measures did not have much explanatory power and were dropped
from the analysis. Results using these measures are available upon request.
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The socio-economics of Pennsylvania vary widely. Due to the geology of the shale

resources, most drilling takes place in rural areas where market rents are shaped by

very different forces than those in the urban centers and suburbs of Philadelphia and

Pittsburgh. In order to limit the confounding effects of unobserved heterogeneity, our

analysis will be geographically focused: we consider only tracts from northeastern

Pennsylvania or the bottom two tiers of New York counties (see Figure 2). The

treatment group is composed of northeastern Pennsylvania tracts whose centroid lies

within 50km of a spudded well. To prevent contamination between our treatment and

control groups, the control group is made up of New York tracts from the bottom two

tiers that are at least 50km removed from a spudded well in Pennsylvania (this rules

out commutes from across the state border). This exclusion reduces the probability

of violating the stable unit treatment value assumption. At the end of the process,

we are left with 336 “treated” census tracts in Pennsylvania, and 126 “control” tracts

in New York.

FIGURE 2
Marcellus Shale Formation in NY
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III.III Summary Statistics

Table 1 presents means and standard deviations of select variables for the treatment

and control groups for the years 2000 (columns 1 and 2) and 2008-2012 (columns

4 and 5). It is easy to see that across most observable dimensions, the New York

census tracts serve as a reasonable control group to the Pennsylvania tracts where

drilling takes place; i.e., the chief difference between the two regions is the moratorium

that prevents drilling in New York. The p-values from t-tests for equality of means

between the two samples are included in columns 3 and 6, and reveal that the New

York tracts are significantly more educated, younger, more urban, and larger. Tests

from the baseline period demonstrate that New York tracts were also historically

better educated, younger, more urban, and larger than the Pennsylvania tracts.

In a difference-in-differences or fixed effect framework, it is the the differences in

the variables that are most relevant. These are shown in the 7th and 8th columns

of Table 1, and p-values from t-tests for equality are shown in the final column.

From this it can be seen that differences in three relevant covariates are significant

at the 5% level: New York census tracts get older, gain more households, and gain

a smaller proportion of rental units over time. The bias from aging is unclear, but

the more households and fewer rental properties would be associated with higher

rents ceteris paribus. This suggests that observable differences between changes in

our treatment and control sample are likely to bias our estimates of the effect of shale

gas development on rents in Pennsylvania downward.
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The year 2000 data can also serve as a baseline to consider how rents have changed

in different census tracts since the new drilling boom. Table 2 shows some details

about the percentage change in rents between 2000 and 2008-2012 for the census

tracts of interest, after deflating 2008-2012 rents by the housing component of the

CPI. While there is a sizable gap in the unconditional means, the gaps appear much

larger at the higher percentiles. This feature is also observable in Figure 3. A shift

between the two distributions is quite noticeable, and appears to be bigger at the

highest quantiles. These preliminary findings motivate the use of quantile regression

techniques in unmasking the heterogeneous effects of drilling.

TABLE 2
Percent Change in Rent: 2000 to 2008-2012

Statistic

Mean Sd P25 P50 P75 P95 P99
PA treatment (n=336) 46.9 23.4 32.9 43.5 58.4 91.2 116.5

NY control (n=126) 34.4 26.1 19.3 31.2 44.1 67.2 104.1
Total (n=462) 43.6 24.7 28.7 40.8 55 85.1 116.5

Source: Census Data

FIGURE 3
Kernel Density Estimates of the distribution of rent changes
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IV Empirical Strategy and Results

In this section we present our model of rent determination, the accompanying es-

timation routine and results. We first estimate a mean effect, using the matching

difference-in-differences estimator from Heckman et al. (1998). Then we deepen the

analysis by adding quantile regression techniques. To do so, we extend the quan-

tile panel estimator developed in Chen and Khan (2008) to the context of matching.

Results demonstrate significant variability in effects along the distribution of the un-

observable error term.

IV.I Matching

Matching estimation is a useful and flexible technique for evaluating average treat-

ment effects when only nonexperimental data is available. Intuitively, matching works

by directly comparing a treated units’ outcome to a similar-looking control units’

outcome. However, the technique can also be applied in panel data contexts lead-

ing to a difference-in-differences type matching estimator. Asymptotic theory for the

difference-in-differences matching estimator was developed by Heckman et al. (1997,

1998), and has been employed in various contexts by Galiani et al. (2005) and Gertler

et al. (2004) among others.

In general, matching methods feature a distinct advantage: by avoiding the need to

specify a functional form for the outcome variable, misspecification issues do not arise.

The theoretical framework has been outlined in Rubin (1974) and Holland (1986).

This framework posits that each individual a priori has two potential outcomes,

one if treated (RT ) and one if untreated (RC). If z is a dummy variable indicating

treatment, then the outcome variable observed by the econometrician is precisely

R ≡ zRT + (1 − z)RC . The counterfactual outcome is never observed, but the

economic variable of interest is the treatment effect, Θ ≡ RT −RC .

The available data readily allows for the recovery of the conditional distributions

F (RT |X, z = 1) and F (RC |X, z = 0). However, the joint distributions and the distri-

bution of the treatment effect are not as easily estimated. Consequently, developed

estimation techniques generally focus on recovering the mean effect of treatment on

the treated, E[RT − RC |z = 1]. This value provides the expected treatment effect
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for any program participant and is usually the parameter of interest in evaluating

treatment programs.

For matching to provide valid inference, two key assumptions must be met. The first

is that the two potential outcomes are independent of participation status conditional

on observed characteristics X.

Assumption IV.1. (RC , RT ) ⊥⊥ z|X

Assumption IV.1 can be re-stated as either Pr(z = 1|RC , RT , X) = Pr(z = 1|X)

or E[z|RC , RT , X] = E[z|X]. In words, neither the observed nor the counterfactual

outcome reveal any information about the probability of treatment, conditional on

X. This assumption was termed “strict ignorability” of the treatment assignment by

Rosenbaum and Rubin (1983).

Furthermore, it is generally assumed that for every value of X the probability of

treatment is neither 0 nor 1.

Assumption IV.2. 0 < Pr(z = 1|X) < 1 ∀X

Assumption IV.2 guarantees that appropriate matches can be found for all treated

and untreated observations.9 Even if Assumption IV.2 is not strictly met in the data,

matching can still be an appropriate estimation method on the region of common

support, SP . Of course in this case, interpretation is altered as the econometrician

has estimated the average treatment effect, conditionally on the region of overlapping

propensity for treatment.

Matching is further complicated when the dimensionality of X is high. “Small cell”

problems might exist for discrete X, and continuous X are plagued by slow rates of

convergence due to the curse of dimensionality. Fortunately Rosenbaum and Rubin

(1983) demonstrated that when RC outcomes are independent of z conditional on

X, they are also independent of z conditional on P (X) ≡ Pr(z = 1|X). In other

words, matching on the propensity score is a valid approach. Using the propensity

9It should be noted that if the only parameter of interest is the mean treatment effect on the
treated, then these assumptions are stronger than necessary. Specifically, Assumption IV.1 can be
replaced with a condition on only RC : E[RC |X, z = 1] = E[RC |X, z = 0] = E[RC |X]. Likewise,
Assumption IV.2 can be relaxed as the econometrician only needs to guarantee that a non-treatment
observation can be found for each treated observation. This only requires that Pr(z = 1|X) < 1 ∀X.
See Heckman et al. (1998).
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score reduces the matching problem to a single dimension, but splits the matching

estimation into two stages. The first stage involves estimating the propensity score

P (X) with a binary discrete choice model; typically this is a fully parametric logit

or probit model, but semiparametric or nonparametric methods might also be used.

In the second stage, treated and control observations are matched together based on

their estimated propensity scores.

Matching estimators form their matches in a variety of ways: nearest neighbor,

caliper, stratification/interval, kernel/local linear, etc. For example, in the latter case

observations are matched to a weighted average of several other observations, with

weights determined nonparametrically. Furthermore, matching may be performed

either with or without replacement, i.e. a single control observation might be used

more than once. A significant disadvantage of matching without replacement is that

results might be altered by different orderings of the data. For simplicity and due to

the fairly small sample size, this paper will use a simple nearest neighbor matching

strategy with replacement. In this framework we find single matches so the matching

weights are W (i, j) ∈ {0, 1} with
∑

jW (i, j) = 1 ∀i. The match is determined by the

closest propensity score from the other group, conditional on both propensity scores

falling within the SP . Defining T and C to be the treatment and control groups, the

match for observation i ∈ T is found by:

W (i, h) = 1 ⇐⇒ h = arg min
j

|Pi − Pj|, j ∈ C, Pi, Pj ∈ SP .

When applying matching to panel data and the difference-in-differences framework,

the assumptions above must be modified slightly; for two time periods t and t′ the

estimator now requires that the expected (realized or potential) non-treated difference

over time be the same regardless of treatment.

Assumption IV.3. E[RC
t′ −RC

t |P, z = 1] = E[RC
t′ −RC

t |P, z = 0]
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The general form of the difference-in-differences matching estimator is given by:

δ̂GM =
1

n

∑
i∈T ∩SP

[
(RT

t′i −RC
ti)−

∑
j∈C∩SP

W (i, j)(RC
t′j −RC

tj)

]

+
1

n

∑
i∈C∩SP

[ ∑
j∈T ∩SP

W (i, j)(RT
t′j −RC

tj)− (RC
t′i −RC

ti)

]
. (1)

In the estimation below, we consider a straightforward nearest neighbor propensity

score matching routine. In order to ensure common support, (i.e. satisfy assumption

IV.2) we discard treated observations whose propensity is above the 99.5th quantile

of the distribution of control observations, and control observations whose propensity

score is below the 0.05th percentile of the treated observations propensity score. With

the single nearest neighbor matching routine, equation 1 simplifies to:

δ̂NNM =
1

n

∑
i∈T ∩SP

[
(RT

t′i −RC
ti)− (RC

t′j −RC
tj)
]

+
1

n

∑
i∈C∩SP

[
(RT

t′j −RC
tj)− (RC

t′i −RC
ti)
]
, (2)

where j ∈ C is the appropriately matched control observation for each observation

i ∈ T .

IV.I.1 Matching and Bootstrapping

Standard errors are a bit more difficult to calculate when using a matching estimator.

Abadie and Imbens (2008) point out that a typical bootstrap is poorly motivated

in the matching case and might lead to either the over- or underestimation of stan-

dard errors. As an alternative, they suggest a subsampling bootstrap such as that

developed in Politis and Romano (1994). The subsampling routine requires mini-

mal assumptions in order to achieve consistency. In particular, in contrast to the

traditional bootstrap, it only requires that the statistic being estimated has a limit-

ing distribution and relaxes the assumption that the distribution be smooth.10 The

subsampling routine is implemented by drawing fewer observations than the sample

10Matching estimators tend to have highly non-smooth distributions because they are functions
of distributions of the data.
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size at each iteration, and drawing without replacement. Politis et al. (1999) discuss

the routine in detail in a number of contexts, and outline a data-driven approach to

selecting the subsample size.

Furthermore, Politis et al. (1999) describe how to calculate bias-reduced estimates.

The empirical bias of a parameter estimate γ̂ is given by:

bias(γ̂) =

√
b

n

(
¯̂γ∗ − γ̂

)
,

where b is the size of the subsample at each iteration, n is the full sample size, ¯̂γ∗

is the mean of the subsampled point estimates, and γ̂ is the estimate using the full

dataset. Below, we present only bias-corrected estimates: γ̂BC ≡ γ̂ − bias(γ̂).

IV.I.2 Matching Results

Table 3 presents the results from estimating equation (2).11 The treatment and control

groups are formed as outlined in Section III, and so the binary treatment is defined

by having at least one well drilled within 50km.

Observations are matched using propensity scores generated by a probit model linear

in tract income, age, education, percentage white-collar employment, poverty rate,

population, number of households, rental vacancy and the proportion of the housing

market made up of rentals. All of these variables for matching are taken only from

the baseline data from the year 2000. Thus matching occurs only on the basis of

pre-treatment observables and is not confounded by changes that are simultaneous

with the introduction of drilling.

The method estimates a statistically significant treatment effect on the treated of an

$89 increase in monthly rents. This $89 represents a 13.07% increase in rents at the

sample mean of $684.03, or a 13.19% increase at the treatment group mean of $678.32.

One advantage of this method is its non-parametric nature and lack of sensitivity to

functional form.

The estimated effect is much smaller than might be expected from reading popular

11The discrepancy in sample size from earlier is due to the imposition of the common support
restriction.
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TABLE 3
Matching DID Results

(1)
Log rent

Wells indicator 89.42∗∗∗

[28.40]
Observations 458

Standard errors in brackets
∗ p < 0.1, ∗∗ p < 0.05, ∗∗∗ p < 0.01

media sources. This motivates an investigation into heterogeneous effects along the

distribution of the error term. The following section outlines an estimation technique

that combines matching and quantile regression before presenting results.

IV.II Quantile Regression

The impact of drilled wells on a census tracts’ median rent might not be the same

at the mean as at other points of the rent distribution. Indeed, that would only be

true if drilling represents a “common effect” or “location shift” (Abadie et al., 2002;

Heckman et al., 1997). The varied conclusions of the public studies, combined with

the disagreement between anecdotes and preliminary statistical evidence indicate that

the common effect assumption may be violated.

Following Koenker and Bassett (1978) and Koenker and Hallock (2001), we consider

a model of rent determination featuring linear heteroskedasticity:12

Ri = θzi +X ′iβ + (ξ1zi +X ′iξ2) εi. (3)

We use θ and zi to denote the coefficient of interest and an indicator for treatment

respectively, and assume that εi is independent from zi and X ′i and conditionally mean

zero. It is easy to see that within this setup, marginal effects can vary by quantile.

Letting ρφ denote the φth quantile of εi, one can see that the φth conditional quantile

12For now, the fixed effect and time subscripts are omitted for exposition.
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of Ri, qφ, is given by:

qφ = θzi +X ′iβ + (ξ1zi +X ′iξ2) ρφ

= (θ + ξ1ρφ)zi +X ′i(β + ξ2ρφ)

≡ θφzi +X ′iβφ.

Defining µε ≡ E[εi](= 0), the conditional mean of Ri is accordingly:

qµ = θzi +X ′iβ + (ξ1zi +X ′iξ2)µε

= (θ + ξ1µε)zi +X ′i(β + ξ2µε)

≡ θµzi +X ′iβµ

(
= θzi +X ′iβ

)
.

The difference between the two measures is:

qφ − qµ = θφzi +X ′iβφ − θµzi +X ′iβµ

= ξ1(ρφ − µε)zi +X ′i

(
ξ2(ρφ − µε)

)
,

and so depends on the shape of εi’s distribution. For example, if the distribution is

skewed to the left (and ξ1, ξ2 are positive), then the marginal effect retrieved from

mean estimation will understate the true marginal effect at the median and higher

quantiles. Likewise, if εi’s distribution is right-skewed, mean estimates will overstate

the true marginal effect at low quantiles.

The use of quantile techniques allows the econometrician to control in some sense

for unobserved heterogeneity. Heterogeneous marginal effects are recoverable at dif-

ferent points along the conditional quantile distribution.13 This property is highly

useful in the present context: although the census dataset provides us with a huge

number of observable variables, many determinants of the marginal effects of drilling

wells on rents remain unobserved. For example, the dataset does not include infor-

mation about the recent development history of the census tract, the labor, capital

and financial capacity for timely new construction, regulatory or infrastructural hur-

dles to construction, the presence of temporary housing alternatives such as hotels,

worker preferences driven by word of mouth, or the decision of a firm involved in the

13Furthermore, the distribution of εi can be identified up to a scale and location normalization.
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drilling to locate a “base of operations” nearby. Our estimates will allow us to predict

marginal effects at different points of the quantile distribution of these unobservables,

conditional on some observable controls.

IV.III Quantile Regression and Matching

The application of quantile techniques to the matching context is not straightforward.

A threat to consistency arises from the fact that the quantile and difference operators

are not interchangeable. However, the method developed by Chen and Khan (2008)

in an application to panel data is easily extended to the matching context.

Recall our model of interest:

Ri = αi + θzi +X ′iβ + (ξ1zi +X ′iξ2) εi,

and observe that the φth conditional quantile has the following form:

qφ = αi + θzi +X ′iβ + (ξ1zi +X ′iξ2) ρφ (4)

= αi + θφzi +X ′iβφ (5)

We are interested in estimating the treatment parameter at the φth quantile, θφ.

If counterfactual data were observable, this quantity might easily be calculated by

differencing the treatment and control median rents at the quantile of interest:

qTφ − qCφ = (αi + θφz
T
i +X ′Ti βφ)− (αi + θφz

C
i +X ′Ci βφ)

= θφ(zTi − zCi ) + (X ′Ti −X ′Ci )βφ

= θφ.

Of course, this is infeasible because counterfactual data does not exist. We proceed

in the spirit of matching, by substituting similar-looking control observations for the

nonexistent counterfactual data for treated tracts, and vice versa. Labeling treat-

ment and control groups as T and C respectively, we match observations using the

propensity score matching function m(·) : K 7→ K′, K,K′ ∈ {T , C}, K 6= K′ over a

region of common support SP on a priori observables.

Following the idea of Chen and Khan (2008), we then impose non-parametric structure
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on the fixed effects:

αi = αj = f(Xi, Xj) j ∈ m(i).

Specifically, we assume that treated census tract i and control census tract j, matched

through propensity estimation function p(·) share a common unobserved effect. Fur-

ther, this effect is an arbitrary function of both tracts’ observable characteristics,

making the method quite general. The structure imposed on the shared effect mir-

rors that assumed in Chen and Khan (2008) exactly. Paired with the assumption

that ρTφ = ρCφ , a natural estimator of θφ suggests itself. Assuming for now that i ∈ T ,

we have the following:

qTφ − qCφ = θφzi + (X ′i −X ′j)βφ, j ∈ m(i). (6)

Estimation then proceeds with the same two-step procedure outlined in Gamper-

Rabindran et al. (2010). In the first stage, we perform traditional quantile regression

and calculate fitted values q̂Tφ and q̂Cφ , using data from both the treated observation i

and the control observation j. In the second stage, their difference is calculated and

regressed on the differenced X variables via OLS. Standard errors are again calculated

with the subsampling bootstrap routine with 1,000 iterations.

In practice, we use the same propensity score matching function and binary treatment

variable as above. The coefficients of interest are presented below in Figure 4, and the

estimated coefficients on other control variables are included in Figures 5 through 7.

Estimated effects at various quantiles are depicted (points connected by solid line),

as well as the empirical bias-corrected 95% confidence interval (dashed lines). The

results suggest significant heterogeneity in the effects of being within 50km of spudded

wells on rents. At the lowest quantiles, the effect is a statistical zero. From the 20th

to the 80th quantiles, the effect increases from around $50 to $125 per month. At the

top of the distribution, the effect more than doubles to over $250 per month. The

estimate of $266.82 at the 95th percentile represents a 39.0% increase at the sample

mean. The estimated effect still falls short of the sensational numbers reported in the

press, but data limitations allow estimates only at the median rent of a given census

tract, observed in a five year moving average.14
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FIGURE 4
Effect of Shale Gas Drilling Activity within 50km at Select Quantiles

Estimated using the approach outlined in Section IV.III. Estimated coefficients at various quantiles
are drawn with the solid line. An empirical bias corrected 95% confidence interval is drawn around

the estimates in dashed lines.

23



FIGURE 5
Marginal Effect of Control Variables at Select Quantiles

Estimated using the approach outlined in Section IV.III. Estimated coefficients at various quantiles
are drawn with the solid line. An empirical bias corrected 95% confidence interval is drawn around

the estimates in dashed lines.
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FIGURE 6
Marginal Effect of Control Variables at Select Quantiles

Estimated using the approach outlined in Section IV.III. Estimated coefficients at various quantiles
are drawn with the solid line. An empirical bias corrected 95% confidence interval is drawn around

the estimates in dashed lines.
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FIGURE 7
Marginal Effect of Control Variables at Select Quantiles

Estimated using the approach outlined in Section IV.III. Estimated coefficients at various quantiles
are drawn with the solid line. An empirical bias corrected 95% confidence interval is drawn around

the estimates in dashed lines.

While the use of matching generally reduces the impact of functional form specifi-

cations and biases due to misspecification (e.g. see Ho et al. (2007)), this estimator

requires functional form assumptions. While the results lose non-parametric flavor,

they gain the application of quantile methods in the matching context.

14A coarse investigation into how the distribution of rents shifts differentially with the introduction
of wells is possible with the band-coded rent data from the Census. No major differences are
discernible, supporting the use of median rents as the independent variable.
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V Discussion

The recent increase in drilling activity on the Marcellus shale formation has had major

impacts on local economies, particularly in the remote area along the Pennsylvania

- New York border. Media reports have documented the challenges brought to local

towns by the influx of well workers. Much attention has been given to rental housing,

a sector where supply cannot quickly rise to meet a jump in demand.

This paper seeks to investigate the effect of fracking on rents empirically. We exploit

a regulatory discontinuity - the moratorium on fracking in New York, in contrast to

legal fracking in Pennsylvania - for exogenous variation in fracking activity. Initial

results illustrate that the mean effect of fracking on rental housing is economically and

statistically significant, although far below the sensational impacts that are reported

in the news.

We also extend the panel data quantile regression method of Chen and Khan (2008)

to the matching context. This results in a quantile estimator that has a difference-

in-differences flavor. The results show significant heterogeneity, indicating that the

impact of proximate fracking on rental markets varies widely along the distribution

of the unobservable error term. While certain features of the data suggest that our

estimates may still be a lower bound on the true effect, we find impacts at the top of

the distribution more than three times larger than the mean.

This set of conclusions has implications for policy makers in shale gas areas, especially

on the Marcellus shale. Estimated effects are generally significant, but for most census

tracts they fall far short of the sensational squeezes reported in the press (which may

not be describing changes at the median). Furthermore, the increase in rents in the

context of falling housing prices (see e.g. Muehlenbachs, Spiller and Timmins, 2014)

raises some interesting economic questions. Would homeowners bothered by fracking

be better off renting their house instead of selling it? As economic theory predicts

that property values should rise with rents, do hedonic studies such as Muehlenbachs

et al. (2014) understate the disamenity associated with drilling?

Future research into the issue might proceed in a variety of ways. A similar approach

can be taken with alternate specifications. Higher quality data on rents would allow

for the investigation of a number of further questions. For example, annual data
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would enable the comparison of short- and long-term effects, and might reveal the

effects found here to be transitory. They might also combat the attenuation that

stems from using 5 year moving average data. More detailed data on the within-

tract distribution of rents, as opposed to just the median, might provide a more

detailed picture of heterogeneous effects. Finally, it would be interesting to study the

response of supply to the surging demand - possible sources include company-built

housing, homeowners renting out rooms/houses, and developers building additional

rental properties. These alternatives would be expected to alleviate pricing pressure

on rents, but might be associated with other negative economic consequences, e.g., the

“man camps” which have become common in parts of North Dakota. An additional

such disamenity combined with lower rents might serve to depress house prices even

further. Complete real-estate market data (e.g. including rent and company housing

figures) allowing a comparison of responses in different shale regions of the U.S. might

reveal if this is the case.
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