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ABSTRACT. The difficulty of conducting relevant experiments has long been re-
garded as the central challenge to learning about the economy from data. The standard
solution, going back to Haavelmo’s famous “I'he Probability Approach in Economet-
ries”, involved two elements: first, it placed substantia] weight on a priori theory as
a source of structural information, reducing econometric estimates to measurements of
causally articulated systems; second, it emphasized the need for an appropriate statis-
tical model of the data. These elements are usually seen as tightly linked. I argue that
they are, to a large extent, separable. Careful attention to the role of an empirically
justified statistical model in underwriting probability explains puzzles not only in eco-
nomics, but more generally with respect to recent criticisms of Reichenbach’s principle
of the common cause, which lies behind graph-theoretic causal search algorithms. And
it provides an antidote to the pessimistic understanding of the possibilities for passive
observation of causal structure in econometrics and related areas of N ancy Cartwright
and others,

1 Econometrics and the Problem of Passive Ob-
servation

For nearly two centuries — at least since Mill [23, p.327] — philosophers have ob-
served, and economists have lamented, the barriers to turning economics into an
experimental science. At one point, the lack of scope for controlled experiments
was seen as a serious barrier to the application of modern, probability-based
statistics to economics. The situation was saved — or, at least, economists were
comforted — with the publication of Trgyve Haavelmo’s ¢ The Probability Ap-
proach in Econometrics” [7] and the subsequent development of the theory of
econometric identification by the Cowles Commission ([11, 21]; see Bouman’s [3]
excellent history of these developments).

There were two critical ideas in the new approach. The first is that statistical
controls, accounting for covariates, could take the place of experimental controls

1The author is with Departments of Economics and Philosophy, Duke University, Durham,
North Carolina, U.S.A. This paper is an abridgment of Hoover (2007). An earlier draft was
presented to the 13" International Congress of Logic, Methodology, and the Philosophy of
Science at Tsinghua University, Beijing, China 8-16 August 2007. I thank Julian Reiss for
comments on that draft.



498 Kevin D. Hoover

[24, chap.8, esp. pp.246-248]. Haavelmo proposed that an economic process could
be partitioned into a deterministic and a random part. If the causal structure of
the deterministic part were articulated fully and accurately enough, the random
part would conform to the laws of probability.

The second critical idea was that the causal structure of the deterministic
part of the economic process had to be articulated accurately. Haavelmo sug-
gested that a priori economic theory could do the job. This second idea was the
necessary prop of the first. The Cowles Commission, which took up Haavelmo’s
project, made the crucial discovery that causal structure is richer than, or (at
least) distinct from, the probability structure [11, 21].

Take a very simple example. Suppose that A causes B, where A and B are
two stochastic variables. Their relationship can be represented graphically as
A — B and algebraically, with some additional structure, as:

A=ey (1)

B« aA+ep (2)

where €4 and £g are random error terms; for convenience we assume that each
is distributed independent normal with mean zero and variances (J"E‘ and JZB
(notated €4 ~ independent N(0,0%) and £ ~ independent N(0,0%)). Each
is independent across successive draws and independent from each other (Wl'uch
implies that the covariance of £ 4 and e is zero (cov(ea,ep) = 0). The coeflicient
o is a fixed parameter. And the arrowhead on the equal sign turns it into an
assignment operator, a reminder that the model incorporates the asymmetry of
causation.

The causal structure of Eq.1 and Eq.2 determines its probability structure.
Substituting Eq.1 into Eq.2 yields what econometricians refer to as reduced forms,
which completely characterize the probability structure of the variables:

A:EA:EA (3)

B=oqaes+ep=FEp (4)

E4 and Ep are themselves distributed E4 ~ independent N(0,0%) and Fp ~
independent N(0,a20% + ¢%). But they are not independent of each other; in
fact, cov(E4, Eg) = ac? =2 #0.

The sense in which the causal structure is richer than the probabilistic struc-
ture is that the implication runs one-way: Eq.1 and Eq.2 imply Eq.3 and Eq.4,
but not the other way round. In fact, if B — A with a causal structure analogous
to Eq.1 and Eq.2, instead of A — B, we can generate the reduced forms:

‘ A=¢, + el = E4 (5)
B = 533 = EB (6)

The imfportant thing is despite the difference in causal structures (reflected in
the difference in the middle terms in the two sets of equations), both equations
Eq.3 and Eq.4 and equations Eq.5 and Eq.6 define the same random terms,
E,4 and Ep. And these terms have the same interdependence in ez'Lch case:
cov(Eg4, Eg) = B0%, = . They define the same probability distribution; they

Probability and Structure in Econometric Models 499

are observationally equivalent; or, in the argot of econometrics, they are not
identified.

The observational equivalence of the two sets of equations means that we can
work backwards to form estimates of the parameters only if we are willing to
commit to a particular causal structure. If we believe that theory (or some other
extra-statistical source) tells us that Eq.1 and Eq.2 constitute the correct causal
structure, then we can use observations on A and B to estimate the parameter
. But what if, as economists often believe, causation is mutual (4 < B)? For
example, suppose that the causal structure is

A< pB+e] (7)
B<dA+él (8)

Then there are infinite combinations of causal strengths connecting them, so that
the equivalence class is itself infinite.? There is no way to recover estimates of
o or B without further non-empirical assumptions (e.g., about their relative
strengths). This is the classic identification problem in econometrics.

The classic solution is to imagine that A and B are subject to independent
experimental control. Suppose

X—A—aB~Y . (9)

where X is a means of intervening on A independent of B or Y, and Y is a means
of intervening on B independent of A or X. The Cowles Commission showed
that, in such circumstances, unique estimates of o/ or #’ could be recovered. If
we have independent reasons for thinking that the world is structured like Eq.9
and that X and Y can somehow be observed, then passive observations could
replace controlled experiments.® In macroeconomics, the analogy with controlled
experiments is the basis for techniques of causal inference based on patterns of
invariance and noninvariance [12, chap.8-10]; while in microeconomics, it moti-
vates the search for “natural experiments” [1]. The Cowles Commission itself
and econometric orthodoxy in the second half of the 20** century downplayed
experimental analogues, emphasizing instead the role of a priori economic theory
in selecting the warranted causal structure such as Eq.9, in which X and Y are
just additional observed variables, now christened instrumental variables (or just
instruments).

The Cowles Commission’s strategy opened an era of optimism about the
possibilities for passive observation and the articulation of causal structure. Soon,
however, pessimism set in: where does our confidence in the causal structure come
from? Sims [31] famously stigmatized the assumed causal order as relying on
“incredible” identifying restrictions (i.e., assumptions about which variables are
not causally connected) — cf.[22]. For a while, some economists were resigned to
using reduced forms only, but one can say so little about policy problems without
a causal understanding that a whiff of a prior: theory was soon reintroduced; and,

1 1
2The reduced forms are A = (m> (e +Pe))=E4 and B = (T—Ta'—ﬁ) (o’e’} +
%) = Ep. Once again, as indicated by the right-hand terms, they define the same probability
distribution as Eq.3 and Eq.4 or Eq.7 and Eq.8.

3Scheines [29] provides a careful exposition not only of the logic of such inference from
natural experiments, but also of the close analogy with the logic of controlled experiments.
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for those who were still skeptical of a priori theory, natural experiments became
the lodestone.? o ' '

Behind the alternating optimism and pessimism lies perhaps th‘e biggest ques-
tions in empirical economics: how, and exactly what, can economists learn from

passively data?

2 Probability Models: Function and Inference

In clarifying the identification problem, however, the Qow}es Commission ralfes
issues that go beyond economics. Cartwright [4] maintains '.chat. econometrics
provides the clearest example of how probability should functlon.m physmalz as
well as social, sciences. What impresses Cartwright are thfa detailed theoretical
assumptions that inform theoretically identified econometric mode.ls. ’;[’hese c.orl—1
respond, in experimental contexts to experimental controls and‘ shielding, Wh}c

she argues allow “nature’s capacities” to display themselves without conﬂatmg1
interference, just as the set of instrumental variables allow t‘he strengths of causa
connections to be measured in econometric models. Cartwrlg'h't [5., p.173] empl.la-.
sizes the stringency of the conditions needed to throw capacities into clear relief:

My claim is that it takes hyperfine-tuning ...to ge‘t a probabili‘.oy.
Once we review how probabilities are associated with very spe_c_lal
kinds of models before they are linked to the world, both in prob.ablhty
theory itself and in empirical theories like physics a,nc% ecopomics, we
will no longer be tempted to suppose that just any situation can be
described by some probability distribution or ot.her. I.t takes a very
special kind of situation with arrangements set just right — and not
interfered with — before a probabilistic law can arise.

And while she is grateful to econometricians for clarifying the logic of th'e problejm,
she is pessimistic with respect to the project of applied economgtnc_s, seeing
econometricians as having themselves la]i(g the groundwork for showing it to be a
i less undertaking [5, chap.6-7].
qultCeal.:‘(t)vlzriight’s pessimisngl [about econometrics is ba?s.efi in what it 'teaches hejr
about the application of probability. First, probablhtles'are not simply there
in the world to be invoked whenever it suits our inferential purposes. Rather,
following Hacking [8], she argues that probabilit:ws are ways of codlfy.mg t.hg
propensities of physical (and perhaps social) machlne.ary to dlsplay be?havmrhwﬁ
frequencies that follow certain patterns. The propensity of a coin to dlsp}ay eads
half the time and to provide no evidence of dependence between successive tossles
(in short, to follow a binomial probability model with t.he key parameter set .to 5)s
requires that the coin, the flipping device, and the environment to be constltulted
in highly particular ways, and only then can we expect the probablhty In(.Jdeh 'tlo
apply. Physical experiments are examples (?f such pomologz.cal machznes, while
what an applied economic theory describes is a sociceconomic machine.
Second, Cartwright asks, how do probabilities attach to the WO%‘ld? Her an;
swer is tﬁlat probabilities attach to the world through models. It is the actual

4See [16, 18] for fuller accounts. ' .y
5H(i)eox[/er [13], 14] shows that Cartwright’s positien is genuinely and unnecessarily, if only

implicitly, pessimistic.
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success of the binomial probability model in describing the frequencies generated
in the coin-flipping nomological machine that warrants claims about probabilities
— for example, claims about how often five heads in a row ought to be expected.

Two of the theses that I shall elaborate and defend are reactions or qualifica-
tions of the lessons that Cartwright draws from econometrics. First, her position
that probabilities arise only in chance setups is correct up to a point. The gener-
ation of stable frequencies is a property of real-world (not just physical) systems
appropriately configured. But consistent with Hacking (8, pp.24-25], it is not
the frequencies directly but the frequencies on particular kinds of trials that ex-
hibit chance behavior. The same data may be viewed on different kinds of trials:
“there is nothing unusual about regarding one event under several aspects” 8,
p-25]. Different probability models may be applied to the same data without
conflict or contradiction.

And this connects to my second thesis: Cartwright is correct to stress the
role of models, but their role is not merely to attach probabilities to the world,
but to create probabilities. Without the models, there are no probabilities to
discuss. This is not an anti-realist thesis. For I suppose that that some mod-
els are better than others when judged in relation to actual frequencies from a
particular aspect or point of view and that different points of view may lead to
different, but not contradictory, probability models, The upshot of my theses is
that a (perhaps, the) central problem of econometrics is to establish appropriate
probability models. While there are plenty of statistical tools devoted to speci-
fication testing and specification search, the logical role of probability models in
econometric inference is a relatively neglected topic.®

I also want to defend a third thesis that is well illustrated by the equivalent
probabilistic implications of the causal structures 4 — B, A+~ Band A — B
(see equations Eq.1-Eq.8 above): namely, probability models do not in general
require causal presuppositions. In saying this, I do not wish to contradict another
of Cartwright’s [4] well-known principles that an output of causal knowledge is
delivered ouly by inputs of causal knowledge. Rather I want to defend the weaker
claim that, while prior causal knowledge may be useful and, sometimes at least,
essential, some causal claims may be supported by facts about probability models
that do not depend on assumptions about the truth of these very sanie causal
claims.

To illustrate, consider a simple causal structure: A — ¢ « B , where

A <= EA (10)
B & gp (11)
C & aAd+pB+ec (12)

and g; ~ independent N(0,0?),i = A, B, C and cov(ei,e5) = 0 for all 4 # 7. The
arrangement is one with a common effect of two independent, causes, sometimes
known as an unshielded collider [36, p-10]. The causal structure itself cannot be
directly observed, but we can observe realizations of the variables.

Now suppose that we want to infer the causal structure from the data. We
begin by trying to establish a probability model of the data. A normal distri-
bution is often a good place to start. There are standard statistical tests for
normality. The joint normal model of three variables can be described by nine

SHowever see (10, esp. chs.1, 15], [19, 20, 34, 35].
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parameters: three means (call them A, B, C), three variances (03,07, 0%), and
three covariances or, equivalently, population correlations (pap,pac,psc).’ A
particularly simple model of the data assumes that the three variables are dis-
tributed independent normal with constant means and variances:

Model 1 (A,B,C) ~ N(4, B,C;0%,0%,0%;0,0,0)

where the last three arguments indicate that each of the population correlations
is zero. Probabilistic independence can be defined formally as occurring when
P(X,Y) = P(X)P(Y). Informally, it means that the probability distribution of
a variable is the same whatever realization is taken by another variable. Prob-
abilistic independence implies that the corresponding population correlation is
7ero.

Each probability model sees the data from a point of view. Is Model 1 a
good model? The answer, of course, depends in part on our purposes. If we,
subscribe to an inferential scheme that requires judgments about probabilistic
dependence (for example, the various causal-search algorithms in Spirtes and
Pearl [26, 36]), then it is not a good model, since it assumes that there is no
probabilistic dependence. A better model would be

Model 2 (4,B,C) ~ N(4,B,C;0%,0%,0%; paB, pac, PBC)

There is no loss from taking this point of view, since Model 2 nests Model 1:
if we decide that on our best estimates pap = pac = ppc = 0, then Model 2
collapses to Model 1.

Whether a model is good also depends on its relationship to the data. Various
statistical techniques allow us to estimate the parameters of Models 1 and 2 and
whether one encompasses or nests the other, as well as to test their errors for nor-
mality, randomness and probabilistic independence against various alternatives.
It is not to our purpose to discuss them in any detail,

The assertion that a probability model truly describes some portion of the
world is a conjecture from which we can deduce that the model accounts for
the co-occurrences of the data (both observed and yet-to-be-observed) except for
some random residual. Conjectures about probability models, like all scientific
conjectures, are accepted because they are supported by the right kind of data.
They are never deductively certain, and they always remain open to doubt and
criticism. Serious criticisms must be adjudicated in the light of the data and
may lead to a reassessment of the appropriateness of a probability model. The
crucial point is that the probability model is not a directly observable fact about
the frequencies displayed by the data; rather it is a conjecture, the support for
which depends on a complex of statistical inferences.

Returning to our illustration, suppose that we have obtained estimates for
the parameters of Model 2, we have tested it for normality, and we have tested
and rejected Model 1 as a special case. (These by no means exhausts all that the
statisﬁ@cian might do to convince himself that Model 2 is a good model.) Now,
here is a principle invoked in many causal search algorithms:

7The relationship of the population correlation to the covariance is, for example, pap =
cov(A, B)

OAOB
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Principle of the Common Effect if X and Y are probabilistically indepen-
dent conditional on some set of variables (possibly the null set) excludinrt)r Z
but are probabilistically dependent conditional on Z , then 7 is the COlH;lOll,
effect of X and V" (or Z forms an unshielded collider on the path X zZY)

I do not wish to defend this princi \ i i
principle here, but instead i i
ettt ead consider the logic of its
We start with.an estimate of Model 2. Suppose that a statistical test tells us
that we cannot reject pap = 0 and that the correlation of A4 and B conditional on

C does not equal zero 0). Tl X ki i . o
of Model 2, call it (paBjc # 0). Then, we are working with a particularization

Model 2° (4, B,C) ~ N(A%, B}, 6% 6%,6%,62:0, pac, pnc)
where, .in the custom of econometricians, the “hats” indicate estimated values and
the estuna‘?e.s pac and ppo are constrained to fulfill the condition pPaglc =028
Prc?babﬂlstic dependence is a property of probability disi;ributions| and liot
of realized data. The important judgments here are P(AB) = P(A)P(B) and
P(AB|C) # P(A|C)P(B|C). The crucial point is that these are deductive con-
sequences gf Model 2’ and are not unmediated consequences of observed data
Th'IS is easily seen by noting that Model 1 is, for other purposes and from othe1:
Pomts of view, a perfectly acceptable model of the data; and Model 1 does not
imply P(AB|C) # P(A|C)P(B|C). Given Model 2', we can deduce that the
antecedents of the Principle of the Common Effect are fulfilled and. therefore
con.clude that the data, through the mediation of Model 2, imply A ’—> B« C 7
which we know by assumption is the causal structure that generated the data ,
' There are two points to take away from this illustration. The first is that e.Ln
inference such as the one from the Principle of the Common Effect is a two-ste
process. Step 1 establishes the probability model through statistical iuferencesp
step 2 deduces the probabilistic (in this case, causal) consequence from the in:
ferential principle applied to the probability model. Commentators on causalit
frequently seem confused on the two-step nature of the inference because th};
parameters of common probability models frequently have easily calculated ana-
Iogues among descriptive sample statistics. For example, Pearson’s sample corre-
la.ltlon coefficient ryy is analogue to pyy.? One cannot, however, work direct!
with the sample correlation coefficient or other descriptive statisti’cs without r g
erence to the probability model: .

(a) parameterization is distribution-specific; some distributions may have no

pa.ran}eter closely related to pxy in the normal distribution and, so, nothing
to which 7yy- can serve as an analogy;

8Which r ires | ] . 52 5 5 5 -1
iich requires in particular that (5%, —pacppc) <\ /1—p4cy/1~ ﬁZBC) =0, so that,

iven p } ¥ : 7 )
g e PAB # 0, any nonzero values for both pa¢ and PBC are sufficient.

N _ N N
rxy = 3 (X - X)¥; - )/
j=1 =

(X - X)23 (v; - 7)) %

Jj=1

7

-

and

o=t

B

pxy = E((X = BQOWY — E(Y))/(E(X — B(X))2B(Y — B(Y))?)}



504 Kevin D. Hoover

(b) even when the analogy holds, vy may not coincide with the best esti-ma.te
of pxy, since the parameters of a probability distribution are typlcall'y
estimated jointly (e.g., by maximum likelihood methods) rather than indi-
vidually;

(c) sample descriptive statistics are calculated without the aid of a probability
distribution, and it is only through one or other distribution that they can
have any bearing at all on probability — to act otherwise is to commit a
category mistake.

The principal interest of most researchers with respect to causal search is in
the second step of inferring causal structure from patterns of probabilisti.c de-
pendence. They frequently take for granted that the problem of justifying a
particular probability model from the data has been (or can easily be) solved.

The second point to take away from the illustration is that, in inferring
the pattern of causal dependence from which causal order is itself inferred, we
nowhere refer to the facts about causal structure that form the endpoint of our
inferential chain (namely, the connection of A and B to their common effect C).
That is not to say that we do not use causal knowledge at all. In restricting our
model to three variables, we have implicitly judged that none of the other causal
connections that our three variables has is structured in such a way as to inter-
fere with the appropriateness of Models 2 or Model 2’. Such a judgment may,
of course, be challenged, suggesting further investigation. That we cannot step
out of a causal context notwithstanding, the key point is that we have begged no
question. .

People often intuitively think of probabilistic dependence as a causal notion.
Hacking [8, p.20] provides one formulation:

Two events are commonly said to be independent of each other if
neither causes the other, and if knowledge that one occurred is no aid
in discovering if the other occurred.

But Hacking also agrees to a second formulation: X and Y are indgpenflent .if
P(XY) = P(X)P(Y). Not only is no assumption about causation cited in this
second, standard formulation, the statistical tests of independence are based on
patteérns of co-occurrence without causal reference. Whether knowledge of oue
aids i discovering whether the other occurred depends importantly on what
knowledge we have in mind and what we mean by “aids”.

Generally, two watches give knowledge of each other: if I know that my
watch says 2:39 PM, then it is a fair bet that my neighbor’s watch i:s, p.rett'y close.
My watch even gives me knowledge of what a watch in Australia is hkel}.f to
read, knowing.the difference in time zones between the east coast of the United
States ‘and, say, the west coast of Australia. And although we do not hm.m a
common reference point, I suspect that, if there were Martians and Martians
had watches, then an hour passed on my watch would be an hour passed on a
Martian’s watch (suitably adjusting Martian units to our own). Blllt generally,
it is a well-supported conjecture that my watch is probabilistically mdepe.mdenf
of my neighbor’s, the Australian’s, and the Martian’s watches;(cf.[37, section 2],
[28, p.181}). .

For example, take the standard time signal provided by the U.S. National
Institute of Standards and Technology and the U.S. Naval Observatory as a
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reference time. Define the random variable A = the difference between the time
on my watch and the reference time and B = the difference between the time on
my neighbor’s watch and the reference time. I maintain that typically we will
find a well-supported probability model in which P(AB) = P(A)P(B). More
directly, if b is a particular realization of B, then we will find P(A|B = b) = P(A).
That watches convey knowledge about the likely behavior of other watches and
clocks explains their widespread use. That watches are typically probabilistically
independent of each other explains why, when the power has been cutoff, we can
usefully look to our wristwatches to reset the clock on the microwave.!0
Contrary to Hacking, it would be more accurate to say that

two random variables are independent of each other if the realization
of one conveys no information about the distribution of the other.11

Formulated this way, probabilistic independence does not invoke causal order
conceptually, nor do statistical tests of independence presuppose causal order.

3 The Principle of the Common Cause

The importance of clarity with respect to the two-step inferential process — from
data to probability model, from probability model to causal structure — is thrown
into relief by recent discussions of the Principle of the Common Cause, a version
of which lies at the heart of the graph-theoretic analysis of causal structure and
related search algorithms. Hans Reichenbach [27, p.157] provides the original
statement:

Principle of the Common Cause (Reichenbach) “If an improbable coinci-
dence has occurred, there must exist a common cause.”

Reise [28, p.184] gives a version, which he attributes to Hoover (15, p.548], that
is clearer for the issues to hand:

Principle of the Common Cause (Hoover) “If variables X and Y are prob-
abilistically dependent ..., then either X causes Y or ¥ causes X ,or X
and Y are the joint effects of a common cause.” 12

Reiss states the principle mainly to criticize it.

The background for Reiss’s criticisms is Sober’s [32, 33] putative counterex-
ample.!3 In Sober’s example, bread prices in England and sea levels in Venice are
both rising and ez hypothesi not causally connected. In a sense that is less than

101 say “typically,” because, for example, two old-fashioned electric clocks on the same circuit
that use the cyclicality of the household electricity to control the speed of their motors may be
probabilistically dependent after all.

11And two events are independent of each other if each is a realization of a mutually inde-
pendent random variable.

12Reiss states he needs to modify my statement of the principle to make it consistent with
his own paper. I agree that this formulation is better than my original formulation, which was
specific to a particular context.

13Hoover [15] offers a detailed refutation of Sober’s counterexample. While I remain convinced
of its argument, at some key points the exposition apparently misled some readers about its
essence. I hope to be clearer here.
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perfectly clear, Sober maintains that bread prices and sea levels are correlated
and, therefore, probabilistically dependent.

Reiss categorizes various reactions to Sober’s counterexample as following
one of two strategies: the first strategy argues that Sober’s claim that there is a
genuine probabilistic dependence between bread prices and sea levels is defective;
the second proposes to defuse the counterexample by showing that it fails to
apply to data when they are appropriately prepared.® Reiss treats these two
strategies separately, but observes that they may be complementary. I would put
the point more strongly: if “data preparation” (second strategy) is understood
appropriately and if the first strategy is stated in its positive form (patterns
of probabilistic dependence may support causal inference when genuine), then
there is no legitimate way to separate the two strategies, for the second is part
of establishing the bona fides of the probability model necessary for the first.

Although Sober does not offer any formal measures of correlation between
bread prices and sea levels, he does provide some cooked data and notes that
“higher than average sea levels tend to be associated with higher than average
bread prices” [33, p.332,334]. Unlike Reiss, Sober [33, p.343] acknowledges the
two-step inferential process involved in applying the Principle of the Common
Cause; so, we are entitled to ask what the sample association of bread prices and
sea levels says about probabilistic dependence. Note that on a common measure
of sample association, Pearson’s correlation coeflicient (r), which was previously
defined in footnote 8, bread prices (B) and sea levels (S) are highly correlated
(rgs = 0.99, where —~1 <7 < 1 and |r| = 1 indicates perfect correlation, whereas
r = 0, indicates no correlation.). We cannot interpret this high correlation in
terms of probability without a probability distribution. This is obvious, since it
is exceedingly rare to find a correlation coefficient that is exactly zero; we must
judge whether it is effectively zero or not relative to an assumed probability
distribution.'®

The stationary, multivariate normal distribution is the workhorse of statistics.
It has the nice property that r is an analogue for its population parameter p,
and that it can be shown that, as the sample size increases, the expected value
of r converges to p. Roughly speaking, a distribution is stationary when its
moments (mean, variance, and higher moments) are constant through time. But
a stationary distribution is not a good model of Sober’s data. A stationary
distribution implies that a time-series will cross and re-cross its sample mean
frequently. Sober’s data cross their sample means only once. While this is a nice
clue, there are also formal tests for non-stationarity. There are a number of non-
stationary alternatives to the stationary, multivariate normal distribution — none
of which display the correspondence between the sample correlation coefficient r
and a fixed population parameter, like p.

One alternative is the random-walk in which the best expectation of the value
of a time series at ¢ + 1 is its value at time ¢. If the data were generated by two
probabilistically independent random walks, then 7 would be a worse-than-useless
measure of probabilistically dependence; for the expectation of r as the sample
size grows converges not to a single value but to a uniform distribution over
the inter\val —1 to 1 [10, p.128]. This means that when the world is populated

14Reiss offers [15] as an example of the first strategy and [2, 36, 37] as examples of the second.
15Notice that this is true whether we accept classical statistical testing or a decision-theoretic
approach,
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by random walks that it is easy (and meaningless) to find high levels of sample
correlation among some of them.
The paradigm random walk can be expressed as:

X1 = Xt + & (13)

or equivalently as

AXiyr =¢ (13)

where & is a stationary random error term (e.g., normal). The form (13’) sug-
gest to some commentators {e.g,. [6, 9, 25]) a quick fix. If we difference the
non-stationary time series X, it becomes stationary, and the correlation coef-
ficient between two such differenced, non-stationary time series is an indicator
of probabilistic dependence. The problem with this approach is that, while the
differences of nonstationary variables may be probabilistically dependent, so may
the levels (even when the differences are not), and differencing the data eliminates
the information about this relationship between the levels. Nonstationary vari-
ables that display probabilistic dependence in levels are said to be cointegrated.
If the nonstationary random walk is sometimes illustrated by the path of drunk
stumbling aimlessly as he leaves the bar, then cointegration is the situation in
which the drunk has a faithful friend who follows at a discreet distance to make
sure that he comes to no harm.'®

Sober’s counterexample “works” only because he trades on our implicitly
judging probabilistic dependence against a probability model in which casual
measures of association have a natural interpretation. But even at a casual level,
it is obvious that a stationary probability model is not a good characterization of
the data. And in any non-stationary model, the sample association of bread prices
and sea levels is both natural and not indicative of probabilistic dependence. The
situation is exactly like the association between time kept on two watches: rising
bread prices in England give some indication of sea levels in Venice, but the
distribution of sea levels is the same whether the current realization of bread
prices is a rise or a fall.

The point is not that any particular non-stationary model fits Sober’s coun-
terexample. Rather it is that we must establish the probability model before we
can make any judgment of probabilistic dependence. Sober may acknowledge the
two-step process, but he fails to do the work — either statistically by testing the
data or hypothetically by establishing the true distribution in his thought experi-
ment — necessary to move from the first to the second step. What Reiss thinks of
as data preparation is integral to establishing the probability model from which
probabilistic dependence is ascertained. On the one hand, the probability model
must be appropriate to the data; on the other hand, the probability model helps
to guide the meaningful preparation of the data. This is crucial work for statistics
or econometrics, though it is typically neglected in discussions of the Principle
of the Common Cause.

In contrast to my analysis of Sober’s counterexample, which is not so much
a defense of the Principle of the Common Cause as a demonstration that it does
not fail for Sober’s particular reasons, Reiss offers a defense of the principle — a
defense which falls into the category of “destroying-the-village-in-order-to-save-
it.” Reiss agrees with Cartwright and Hacking that probabilities (i.e., frequencies

165ee [15, section 4-5), for a more technical exposition.
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that are correctly described within the canons of a axiomatization of the behavior
of random variables) arise only in well-constructed chance setups. At the same
time, he objects to the two-step inferential process: he claims that my strategy
“deprives the principle of much of its inferential power and to some extent betrays
the motivation behind it” [28, p.185]. Reiss defends the principle as a sometimes
useful heuristic, providing what he refers to as an “epistemological reading” as
opposed to the “metaphysical reading” implicit in the two-step inferential process.

The contrast between an epistemological and a metaphysical reading is spuri-
ous. The two-step process is about inference (that is, classically epistemological)
and says nothing about what causation actually is.

Reiss’s strategy is explicitly analogous to Patrick Suppes’ [38] well-known
probabilistic analysis of causation. Suppes begins by defining prime facie cause
as the case in which P(A|B) > P(A4). He then tries to catalogue the cases
in which prima facie causes fails to correspond to actual cause and to suggest
appropriate corrections. In parallel, Reiss takes the Principle of the Common
Cause as providing a rule for inferring prima facie cause, and then catalogues a
(partial) list of exceptions to the rule. Reiss’s heuristic rule is not stated as a
relationship of causal structure to probabilistic dependence, but as a relationship
of sample association (or frequency) to causal structure, thus short-circuiting the
first step of the two-step inferential process:

Principle of the Common Cause (Reiss) “The proposition e = ‘Random
variables X and Y are (sample or empirically) correlated’ is prima facie
evidence for the hypothesis h = ‘X and Y are casually connected.” If all
alternative hypotheses ¢ (e.g., ‘the correlation is due to sampling error,’
‘the correlation is due to the data-generating process for X and Y being
non-stationary,” ‘X and Y are logically, conceptually, or mathematically
related’) can be ruled out, the e is genuine evidence for h.” [28, p.193]

It is instructive to see how the two-step inferential process handles Reiss’s
exceptions. Reiss considers seven specific exceptions (non-stationary nonsense
correlations, colliders, mixing, stationary nonsense correlation, homoplasies, non-
statistical nonsense correlations, and laws of coexistence) and suggests that the
list is actually open-ended. All six are easily treated using the two-step inferential
process (see [17] for details). We have already discussed the case of non-stationary
nonsense correlations and, in the interest of space, we consider only one other
case here, that of colliders:

Reiss {28, pp.187-188] takes the causal configuration A — C «— B as an
exception to the Principle of the Common Cause, because the correlation of A
and B conditional on C does not indicate their causal connection (see equations
Eq.10-Eq.12 above for the structure of the probability model). At first this seems
clearly wrong: the Principle of the Common Cause begins with the claim that 4
and B are correlated (whereas the Principle of the Common Effect begins with
them uncorrelated); hence the antecedent of the Principle of the Common Cause
is not fulfilled, so it fails to provide a counterexample. What Reiss has in mind,
however, is that the data on A and B may be collected in such a way that,
without knowing it, we observe them only conditional on C, so that they appear
to be unconditionally correlated.

A real example illustrates Reiss’s concern. [30] Data on child molestation and
exposure to child pornography was collected from prisoners in jail for possession
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of child pornography. Eighty-five percent admitted to having molested children.
Consider three binary (0,1) variables: A = 1 means viewed child pornography,
B = 1 means molested children, and C' = 1 means incarcerated for possession
of child pornography. A concern immediately expressed by various critics of the
study amounts to asserting the possibility that the variables form an unshielded
collider and that A and B are correlated only because the mode of data collec-
tion implicitly conditions on C, the fear being that those who both view child
pornography and molest children are more likely to be incarcerated for posses-
sion than those who merely view child pornography and that viewing it and child
molestation may be unconditionally independent.

The intuition of the critics of the study can be interpreted with the two-step
inferential process as the requirement that we get the right probability model,
which means seriously entertaining the criticism and widening the scope of the
data collection, so that the alternative hypothesis of an unshielded collider can be -
assessed. This strategy is suggested by a wider understanding of the world. But
that is not an objection; there is nothing in the two-step process that suggests
that a probability model is a black box for processing statistics without reference
to their nature and provenance nor that only statistical criteria can be used to
support a particular probability model. It is possible that sometimes we may
make a mistake and do not notice accidental conditioning on an unobserved vari-
able. Reiss persistently confuses the epistemic with the practical. It is nonsense
to attack an inferential principle as metaphysical and not epistemic because we
sometimes make errors in practice. The right response to accidental conditioning
is to try to use all our knowledge to anticipate situations that give rise to such
errors, to criticize research and to respond to criticism, and to test, test, test.

Reiss’s remaining cases (imixing, stationary nonsense correlation, homoplasies,
non-statistical nonsense correlations, laws of coexistence) are all answered in
much the same way as his case of colliders (see [17]).

4 Cartwright’s Pessimism Confounded

We have not offered a general defense of the Principle of the Common Cause.
Instead, we have demonstrated that certain ways of attacking it illustrate the
general proposition that we cannot neglect the need to provide a convincingly
supported probability model if we wish to draw probabilistic conclusions from
data. Reiss’s “defense” of the Principle of the Common Cause goes wrong because
he accepts simultaneously two premises: 1) Cartwright’s view that only tightly
controlled nomological (or socio-economic) machines generate frequencies that
can be modeled probabilistically; and 2) that something like the Principle of the
Common Cause is used — as a matter of fact — in actual research. Omitting the
step of establishing a probability model, the conditions for which, Cartwright
has argued, are too severe to be met in many practical contexts, is a fairly
desperate move. Reiss’s defense ends with the “irony” that, once his open-ended
list of exceptions has been taken on board, we had better stick to experiments
and eschew passive observation {28, p.194]. In the name of strengthening the
practical applicability of the principle, Reiss kiils it. His first premise is the
mortal enemy of his second premise. In the end, he is left exactly where he started
with Cartwright’s view that the scope of probability models is very narrow and
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almost entirely restricted to experimental contexts. .

Cartwright’s position is deeply pessimistic with respect to economics an’d
other sciences that rely on passive observation. Is it justified? Cartwmgh.t s
argument points to a substantial disanalogy between experimen'ts and passive
observation. The disanalogy is real enough; it is the bane of empirical econontics.
But there is also a strong analogy between experiments and passive observation,
which was central to Haavelmo’s analysis sixty years ago. .

Cartwright stresses that experiments generate probabilistically well behaved
data (and, generally, display nature’s capacities) only when t.hey are a,rrang'ed
“just so”. There is a danger of overstating the case. In a discussion of coin-
flipping machines, Cartwright [5, p.166] says:

Imagine ...that we flip the coin a number of times and record the
outcomes, but that the situation of each flip is arbitrary. In this case
we cannot expect any probability at all to emerge.

Approach this claim empirically: take any coin in general cir.culation. and sit
down anywhere and flip it how you will, recording heads and t'zuls. Having clol}e
the experiment, I am sure that over the course of, say, 200 fhps your data 'V\'flll
conform - as judged by standard statistical tests — to a binomial probability
model with a probability 1/2 for heads. .

It matters that on a typical flip, the coin rotates at least once or twice. It
matters that you do not wait to decide how to record the goin un.tll you can
see its resting position clearly. (For example, if a coin is leaning against the leg
of table showing heads, and you decide after you see it that tl.le r_ule for that
particular flip will be to turn its visible side down before reading it, then the
implicit preference for tails — if it persists in other suqh cases — may skew th.e
results.) It does not matter whether you catch the coin in mlqau"and turn it
over on your wrist before reading it or let it fall to the floor or pick it out of the
crack between the cushions on the sofa or fish it out from under the table. It do.es
not matter whether the coin is new or worn or clean or dirty. The frequencies
displayed by coins are very robust. o

The point is not that every capacity nor every prohability is su‘mlarly robust.
It is quite difficult to construct a machine that will rql)ustly 'dehver any prob-
ability other than zero for the frequency of a coin falhng on its edge. Rathe%‘,
the point is that it is a mistake to assert that a very high degree of control is
an a priori requirement of frequencies conforming to stable probability models.
Whether they do or do not is just something that we have to learn about the
world in particular cases.

Even in controlled experiments, the range of factors that we a,tte1.npt to control
are frequently quite limited. Partly because we judge that certain fa;ctors‘ are
irrelevant and partly out of ignorance, many factors are left to_ nature’s whims.
And when we (or some other researcher) “replicates” our expemmen.t, we ‘cannot
set every control in precisely the same way, and whimsical nature plcks'dxfferent
values for factors that we have left uncontrolled. To paraphrasg Heraghtus: you
cannot \perform the same experiment twice. At best each experiment is a 1nodel
of its fellows. As with all models, we have to ask, is it a good or successful
model? We learn from experience and from diagnostic tests whether we have
successfully implemented controls of the right type and what we may neglect 01:
ignore. Sometimes we find out later that we were wrong and that a neglected or
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overlooked factor is essential to the result, so that our experiment needs to be
reinterpreted, redone, or set aside as uninformative.

The situation is not different in kind from what we face in formulating proba-
bility models for passively observed data. We may construct a chance setup and
discover that it is reliable. Equally, we may observe the world and discover that
there is a way of modeling it that reliably acts like a fabricated chance setup
would. Hacking [8, p.1] introduces the notion of a chance setup and promptly
illustrates it with a passively observed example: “the frequency of traffic acci-
dents on foggy nights in a great city is pretty constant.” The controls (day or
night, foggy or clear, in the city or not) are of the same nature as the ones that
find their ways into econometric models. The controls may be represented in
coarse or finely delineated categories, as may the category of traffic accidents
itself. Whether we need finer controls or more controls or controls of different
kind and what kind of probability model should tie them together is a matter —

exactly as it is for physically controlled experiments — for experience and testing
to reveal.

Passive observation is, in many respects, at a disadvantage in comparison
to active experimentation. That fact poses serious challenges for empirical eco-
nomics. Nevertheless, that the inferential logic of passive observation is not of a
radically different kind and that statistics provides many useful tools that help
us to specify and test appropriate probability models is grounds for optimism.
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