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dentity, Structure, and Causal Representation
n Scientific Models

evin D. Hoover

Abstract Recent debates over the nature of causation, casual inference, and the uses
of causal models in counterfactual analysis, involving inter alia Nancy Cartwright
(Hunting Causes and Using Them), James Woodward (Making Things Happen), and
Judea Pearl (Causation), hinge on how causality is represented in models.
Economists’ indigenous approach to causal representation goes back to the work of
Herbert Simon with the Cowles Commission in the early 1950s. The paper explicates a
scheme for the representation of causal structure, inspired by Simon, and shows
how this representation sheds light on some important debates in the philosophy of
causation. This structural account is compared to Woodward’s manipulability
account. It is used to evaluate the recent debates — particularly, with respect to the
nature of causal structure, the identity of causes, causal independence, and modularity.
Special attention is given to modeling issues that arise in empirical economics.

1 Models and Causes

Formal scientific models possess some distinct advantages over verbal accounts.
(There are, to be sure, disadvantages as well.) All representations (formal or verbal)
are partial: they omit, simplify, approximate, and idealize; they fall short of saying
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everything that could be truly said and short of saying everything that we might like
to say. Recognition of the gap between the representation and the world leads
various philosophers — among them, Paul Teller (2001) and Ronald Giere (2006) —
to reconceptualize scientific knowledge as perspectival. Part of the reconceptuali-
zation is a repudiation of the view that omniscience sets the standard for the
worthiness of scientific knowledge.

The truth in a once-common vision of science is that the only fully adequate
scientific knowledge trades in exceptionless, universal generalizations — scientific
laws. All more specific knowledge is, in principle at least, derivable from these
laws. Recognizing — as indeed any serious philosopher or scientist must — that we do
not, in fact, possess all the laws simply meant that what we did possess was a
slightly shabby, deficient version of what we wanted. We do not stand on Olympus,
but science was nonetheless to be judged from the Olympian heights.

An alternative vision of science championed by Giere and Teller, as well as by
Nancy Cartwright (1999), and William Wimsatt (2007), among others, starts lower
and builds upward. The standards of good or successful science are partial and
local, and science itself is constructed, to use an apt term from the subtitle of
Wimsatt’s (2007) book, in a piecewise manner.

The local knowledge that grounds science in this vision is often causal knowl-
edge. Yet, like other parts of science, causation has often been analyzed top down.
Many accounts of causation — for example, those of David Lewis (1973) and Daniel
Hausman (1998) — explicate causes against a background of universal laws. In
contrast, piecewise accounts of science typically take the causal relation as primi-
tive or, at least, built from something more local and specific than universal laws.

A piecewise approach is especially suited to economics and other social
sciences, biology, and areas of physical sciences, such as climatology — fields that
would be hard to analyze from a small set of universal laws on the model of
Newtonian mechanics. Economists, for example, increasingly conceptualize eco-
nomics causally, as evident in the work of Clive Granger in time-series economet-
rics, James Heckman in microeconometrics, recent developments in “natural
experiments” in economics, and counterfactual analysis.*

Causal realism is the doctrine that causal relationships exist in the world and that
the role of causal models is to represent them adequately for some purpose. Not all
scientists (nor all philosophers) who talk about causes are realists, but that is a
question for another day. Here, I want to focus on representation of causes and not
on fundamental ontology or epistemology. It is a commonplace that different
representations or notational schemes allow us to see different things and that
some schemes are more effective than others — consider Arabic numerals or
Feynman diagrams. The main goal of this chapter is to develop a scheme for
representing causal relationships and to consider the light that it sheds on how we

! See Hoover (2008 and 2012a) on the place of causal analysis in economics and Reiss (2007) on
natural experiments and counterfactual analysis. Hoover (2004) documents the fall and rebirth of
causal analysis and language in economics.
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should understand causation generally. The roots of the approach advocated here
are found in my own work as a practitioner of economics and draw on sources, such
a5 the work of Herbert Simon, that were originally aimed at problems that arose in
econoniic and econometric analysis. The application is much broader than these
origins might suggest.

In part, this chapter reacts to Cartwright’s (2007) “pluralistic” account of
causation. In stressing plurality, Cartwright fails to illuminate the close
relationships among a number of approaches to causality that are hidden in alterna-
tive schemes of representing causal relations. In part, the chapter reacts to James
Woodward’s (2003) “manipulability” account of causation — an account which is
much criticized by Cartwright. Woodward’s understanding of causation appears to
be driven by particular schemes of representing causes. A more effective scheme of
representation suggests different conclusions with respect to several important
issues. The account proposed here in no way fundamentally conflicts with the
general approach of modeling causal relationships graphically, developed espe-
~ cially by Judea Pearl (2000) and Peter Spirtes et al. (2000) and used by Woodward.
_ Rather it clarifies the relationship between graphical representations and systems of
equations in a manner that both enriches the graphical approach and demonstrates
_ the fundamental kinship of the two approaches.

2 Representing Causal Structure

2.1 Graphs and Equations

While many philosophers understand causal relations as holding fundamentally
among particular events, occurrences, or properties (i.e., among tokens), Woodward
and most economists understand causal relations as holding among variables (i.e.,
__among types). Token-level relationships for Woodward and the economists are
causal to the degree that they instantiate a type-level relationship. In stochastic
cases, token-level relationships are seen as the realization of random processes.
Relations among variables are often expressible in the form of systems of
equations. Equality is a symmetrical relationship, and the most distinctive charac-
teristic of causal relations is their asymmetry: A causes B gives no ground for
holding that B causes A (although we must not rule out mutual causation without
further consideration). Woodward, in common with Pearl (2000), Spirtes et al.
(2000), and other advocates of graph-theoretic or Bayes net methods of causal
inference, represents causal relations by graphs in conjunction with equations.
Figure 3.1 shows a typical causal graph (uppercase letters represent variables)
that corresponds to a system of equations:

A = O4, (3.1)
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Fig. 3.1 Causal graph of the C
system (3.1)~(3.3)

B = apaA, _ (3.2)
C= aCAA + aCBB, (33)

where, for the moment, we regard the aj; as fixed coefficients.

Systems of equations are causally ambiguous. In stochastic cases, we generally
recognize that correlation is not causation; in nonstochastic cases, the analogue is
that functional relations are not causation. The arrows in the graph represent the
primitive notion of the asymmetry of causation.

Graphs and equations interpreted causally both have a long history in economics
(see Hoover 2004). But it is fair to say that equations have gained the upper hand
and that, for many years, causation itself was rarely referred to directly, but at best
was implicit in distinctions between dependent and independent (or endogenous
and exogenous) variables and in synonyms and circumlocutions: instead of “A
causes B,” A produces, influences, engenders, affects, or brings about B, or B
reflects, is a consequence of, is a result of, or is an effect of A (see Hoover 2009).
A growing wariness of causal language went hand in hand with a wariness of
graphical representation. As Pearl puts it:

Early econometricians were very careful mathematicians; they fought hard to keep their
algebra clean and formal, and they could not agree to have it contaminated by gimmicks
such as diagrams. (Pearl 2000, p. 347)

Equations alone are causally ambiguous, since in themselves they do not repre-
sent causal asymmetry. But graphs are themselves causally ambiguous, because
quite different functional relationships can be represented by the same graph
(Woodward 2003, p. 44). Just as economists found circumlocutions to express
“cause,” they have typically — although not necessarily consistently — represented
causal asymmetry by the convention of writing causes on the right-hand side and
effects on the left-hand side of equations. Various devices have been suggested for
explicitly combining the functional detail of systems of equations with the
asymmetries of the graph. In lieu of the equal sign, Cartwright (2007, p. 13)
suggests a causal equality (c¢™) which Hoover (2001, p. 40) writes as (<). With a
new notational device, the graph in Fig. 3.1 could be omitted and the system (3.1),
(3.2), and (3.3) could, then, be rewritten as

A< ay, (3.1)

B <= apsA, (3.2
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C <= acaA + ocsB. (33/)

Cartwright (2007, p. 16, passim) refers to such equations as “causal laws” — that
 is, laws that connect specific causes to specific effects. Woodward (2003), as well as
most of the literature on graphical causal models, considers one-way causation
only. Economists refer to such systems as recursive, while the graph%cal
representations are often known as directed acyclical graphs (DAGs). Cyclical
graphs (e.g., A — B — C — A) are sometimes entertained, but the tight cycle gf
the simultaneous system (A — B — A or A < B), a bread-and-butter system in
economics, is encountered far less frequently. The equations themselves are gener-
ally taken to be linear — especially linear in parameters. While these restrictions are
by no means necessary, they highlight the inadequacy of the graphs fully to
represent various levels of causal complexity. Economists avoiding graphs (pace
Pearl) are perhaps partly motivated by an appreciation of the subtlety of causal
representation and not some intuitive revulsion toward graphical gimmickry.

2.2 Simon on Causal Order

Following Haavelmo’s “The Probability Approach in Econometrics” (1944),
econometricians focused on what Frisch had called the “inversion problem” —
namely, how to infer the original structure from passive observation of the data
that it generates (Lougd 2007, p. 95). Later dubbed the “identification problem,” a
detailed account of the mathematics was for a time the central focus of the Cowles
Commission (Koopmans 1950; Hood and Koopmans 1953). Identification naturally
requires something to identify. Simon’s contribution to the 1953 Cowles Commis-
sion volume sought to characterize the causal order of a system of equations.
Simon started with a complete system of equations — that is, a system that could
be represented as a multivariate function with a well-defined solution. He then
focused on self-contained subsystems of the complete system. To illustrate,
Egs. (3.1), (3.2), and (3.3) form a complete system. Equation (3.1) is a self-
contained subsystermn in that it determines the value of A without reference to any
other equation. Equations (3.2) and (3.3) considered separately are not self-
contained subsystems as they do not contain enough information to determine B
or C. In contrast, Egs. (3.1) and (3.2) together are a self-contained subsystem, since
they determine the values of A and B without reference to Eq. (3.3).

Simon’s conception is closely related to his later work on hierarchies of systems
(Simon 1996; see also Hoover 2012c). Causes are the outputs of lower-level
systems and the inputs to higher-level systems. The relationship is closely
connected to the solution algorithms for systems of equations. In system (3.1),
(3.2), and (3.3), A is determined entirely by (3.1) and can be regarded as an output.
If we know A, we do not need to know (3.1) to determine B; a specific value for A
forms an input that, in effect, turns the non-self-contained subsystem (3.2) into a
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self-contained subsystem. Its output is, of course, B. Knowing B alone, however,
does not turn (3.3) into a self-contained subsystem. Substituting its value into (3.3)
leaves the variable A in place (despite the fact that B cannot have a well-defined
value unless A also has a well-defined value), and we have to substitute A directly
from (3.1). Thus, A directly causes B, and A and B directly cause C; so, A is both a
direct and an indirect cause of C. This, of course, is the causal structure of Fig. 3.1.

Suppose, however, that we modify the system slightly by replacing Eq. (3.3)
with (3.3"):

C= O!CBB. (3.3”)
Then, A directly causes B, and B directly causes C, but A only indirectly causes C:
Eq. (3.1) is nested in the complete system (3.1), (3.2), (3.3"), but the self-contained
subsystem (3.1) and (3.2) intervenes between the self-contained subsystem (3.1)
and the self-contained complete system (3.1), (3.2), (3.3").
Simon’s analysis assumes that the original way of writing the equations is
canonical. But he notices that the same functional relationships can be represented

by other sets of equations. So, for example, the self-contained subsystem (3.1) and
(3.2) could be replaced by

A:ﬂA +ﬁABB7 (3‘4>

B =g, (3.5)

which has the same numerical solution as (3.1) and (3.2) provided that

ﬁA - (1 _ aBA)7 (36)
—1
Pap = ma (3.7)
and
ﬂB = AACQBA. (38)

(Nothing depends on the fact that the f;; are defined in terms of the a;;. We could as
casily have started with Eqs. (3.4) and (3.5) and derived an analogous set of
restrictions defining the @ in terms of the f; to guarantee identical solutions.)
The two sets of equations have the same solution, but under Simon’s analysis B
causes A in (3.4) and (3.5), whereas A causes B in (3.1) and (3.2). Indeed, since
every linear combination of Eqgs. (3.1) and (3.2) is functionally equivalent, we can
easily write down systems that would be interpreted as having no causal
connections or as displaying mutual causation. This is the sense in which systems

7 Identity, Structure, and Causal Representation in Scientific Models 41

of equations are causally ambiguous, which is the rationale for supplementing them
with graphs. . '
Simon does not appeal to graphs. Instead, he considers a higher-order relation of
direct control over parameters (Simon 1953, pp. 24-27). He invites us (and nature)
to experiment on a system by directly controlling the value of its parameters (the
coefficients now being thought of as parameters that can take different values). The
privileged parameterization is the one in which such experiments can be conducted
independently. Thus, if one represents a causal system by Eqs. (3.1) and (3.2) and
can control A directly by choosing a4 and thereby control B indirectly without
altering the functional form of Eq. (3.2), then the parameter set {ota, apal} is
privileged. No other functionally equivalent system shares this property. '

. Tf, for example, (3.1) and (3.2) represented the true causal order, but we instead
modeled the causal relationships with (3.4) and (3.5), our control of A and B would
not show the same sort of functional invariance. In fact, the only way to achieve the
same values for A and B would be for the coefficient values of {f4, fp, fap} to shift
according to the restrictions (3.6), (3.7), and (3.8). In effect, the decision that {ay,
apa) is the parameter set — and that any other set of coefficients (e.g., {4, #p. Ban})
are simply functions of those parameters — determines the causal direction among
the variables: it puts the arrowheads on the shafts.

2.3 The Structural Account of Causal Order

1 refer to an account of causal order based on Simon’s seminal analysis as the
structural account.? Tt is structural in the sense that what matters for determining
the causal order is the relationship among the parameters and the variables and
among the variables themselves. The parameterjzation — that is, the identification of
privileged set of parameters that govern the functional relationships - is the source
of the causal asymmetries that define the causal order. The idea of a privilege
parameterization can be made more precise, by noting that a set of parame.te.rs is
privileged when its members are, in the terminology of the econometricians,
variation-free. A parameter is variation-free if, and only if, the fact that other
parameters take some particular values in their ranges does not restrict the range
of admissible values for that parameter.

Defining parameters as variation-free variables has a similar flavor to Hans
Reichenbach’s (1956) Principle of the Common Cause: any genuine correlation
among variables has a causal explanation — either one causes the other, they are
mutual causes, or they have a common cause. Since we represent causal connections
as obtaining only between variables simpliciter, we insist that parameters not display
any mutual constraints. Whereas, the Principle of the Common Cause is a metaphys-
ical or methodological presupposition with significant bite, the variation-freeness of

% A more formal presentation of the structural account is given in Hoover (2001, Chap. 3).
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parameters is only a representational convention. Any situation in which it appears
that putative parameters are mutually constraining can always be rewritten so that
the constraints are moved into the functional forms that connect variables to each
other.

For example, in the system

X=a (3.9)

Y=0bX, b<a (3.10)
the parameters are not variation-free, since the choice of a constrains the value of b.
However, this system can be reformulated into a related (nonlinear) system with the
same solutions in which the parameters are variation-free:

X=a (3.11)
ifa>b

ifa<b. (3.12)

s [ox,
"\ undefined,

Because of its analogy with the Principle of the Common Cause, we refer to the
stipulation that parameters be variation-free as the Reichenbach Convention.

Except for the system of Eqgs. (3.11) and (3.12), we have considered only linear
equations. But the structural account can accommodate nonlinearity quite gener-
ally. The key step is that parameters are not defined as coefficients uniquely
associated with particular variables, as they are, for example, in path analysis, in
which the parameters are merely the regression weights associated with each causal
arrow. ;

To see the role of nonlinearity, consider a simplified example of a two-equation
system from a macroeconomic model with rational expectations™:

mp=A+m 1+ &, (3.13)

pr=m+al—5+u,. (3.14)

The subscripts are time indices. Our concern is only with the causal relationship
between m;, and p,, so the lagged value of m can be regarded as a constant. While it is
not vital for our purposes, (3.13) is interpreted as a rule for fixing the money supply,
while (3.14) determines the price level. ‘

It is obvious that in Simon’s framework m, directly causes p,. In our earlier
examples, there was a simple, natural association of individual parameters with
individual variables in equations written in a canonical form (causes on the right-
hand side; the effect on the left-hand side; the two sides comnected by an

® The model is drawn from Hamilton (1995).
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asymmetrical assignment operator (“<").* But here we capnot associate .the
parameter A exclusively with either equation. Indeed, the notion of a canonical
form of equations is merely heuristic and must be abandoned in this case.
Equations displaying this sort of nonlinearity in parameters are referred to in the
macroeconometrics literature as subject to “cross-equation restrictions.” Suppose
that the monetary authority wants to loosen monetary policy; it would increase 4.
Because of the cross-equation restriction, in addition to the direct causal effect of m;
on p;, there is a change in the functional relationship between p, and m,. In a
stochastic version of the model, the conditional probability distribution of p, on
m, would not be invariant to changes in m,. This striking conclusion is well known
to economists as the ‘“Lucas critique” (Lucas 1976).S Economists often discuss it in
terms of “deep parameters” (here a and 1) versus empirically observable
coefficients (say, a regression coefficient II, which in fact equals al — &, but
which is estimated as a unit). In terms of our account of causal representation, the
deep parameters are just the parameters that define causal order.

While the Lucas critique is not unknown to philosophers, it is not always
appreciated that it undermines any necessary connection between a well-defined
causal relationship and the invariance of the probability of an effect conditional on
its causes. Indeed, our account of causal order suggests that it is the invariance of
the probability distribution of the cause (the marginal probability distribution) to
independent changes of other causes of the effect that is the empirical hallmark of a
causal relation (see Hoover 2001, Chap. 8). This claim amounts to saying that it is
not the conservation of the functional relationship of causes to effect as causes vary
that is most characteristic of causal relations; rather it is that effects do not flow
backward against the causal arrow.

2.4 Causal Identity

Implicit in our discussion so far is the notion that variables in causal relationships
must be causally distinct. Let us make this notion more explicit. Variables are
distinguishable when we have some independent means of measuring, observing, or
characterizing them. Yet variables that are distinguishable in this general way need
not be causally distinct.

To take an economic example, prices (P) are distinguishable from quantities (Q),
but consider the simple supply and demand model in which quantities and prices are
mutually determined:

*Which in fact suggested the scheme of distinguishing parameters by subscripts: for example, azc
was the parameter multiplying the variable C in the canonical equation for B.

5For expositions of the Lucas critique, see Hoover (1988, Chap. 8, section 8.3; 2001, Chap. 7,
section 7.4).
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OQ=a+pP (3.15)
P=5+7y0. (3.16)
Solving (3.15) and (3.16) yields
a+ pé
Q=—-r, 3.17
=g (3.17)
o+ ay
P = . 3.18
ey (3.18)

Both variables are determined by the same set of parameters. It would be
impossible, therefore, that we alter the value of one of them without also altering
the value of the other. We might, then, regard the two variables as having a two-way
or mutual causal relationship. But should we really call variables that have no
causal relationships distinguishable from one another as standing in a causal
relationship with each other? It would be more to the point to say that, causally
speaking, there is no difference between them.

The issue arises not only in simultaneous systems of equations. Consider instead
the following system:

A=aq, (3.19)
B = A, (3.20)
C = pA. (3.21)

On Simon’s criterion, A clearly causes both B and C, but what is the causal
relationship between B and C? It might appear to be mutual, since there is no
intervention on either variable that does not alter the other. But this seems counter-
intuitive, because the connection is through the parameter B rather than through the
variables; yet our presumption is that causal relationships are mediated only
through variables. If we imagine the variable B and Eq. (3.20) eliminated, nothing
would change for C.

We see, then, that some systems with or without mutual or simultaneous
causation are problematic, but there is no reason to believe that problematic cases
arise inevitably in simultaneous systems. We need a way of characterizing prob-

lematic and unproblematic systems. This suggests that we characterize causal
identity and causal distinctiveness:

Causal Identity: Two variables are causally identical if aside from their mutual
relationship, they have all the same causes and effects.

Causal Distinctiveness: Variables that are not causally identical are causally
distinct.
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In invoking causes and effects, these definitions are not circular, since whether
or not the relevant causal relationships exist can be determined from the parameg
jerization of the system in line with our elaboration of Simon’s structural account.
When variables are distinguishable because we possess independent means of
. measuring, observing, or characterizing them, a failure also to be causally di§t1nct
will be rare. Causal identity is more likely to be a property of an impover.1shed
‘ representation of the world, arising most naturally in cases in which a few Var.1a.b1<.as
stand in a tight relationship. Causally, identity will rarely arise in nondeterministic
cases, as the variables that describe such cases are, in general, subject to “shocks”
 that distinguish one from another. However, models are nearly always highly
_simplified, and shocks that are small enough in the world may be neglected in a
model, so that, if the world produces “near causal identity,” a good model of the
world may produce exact causal identity (cf. Suppes 1970, p. 33 on e-direct cause).
Similarly, in selecting a simplified representation of the world, we may choose.to
ignore some ways in which variables could be causally distinguished — again,
producing causal identity in the model. .
There is one type of case of causal identity that is not rare, but a pitfall .tc.> be
carefully avoided. Conceptual identities or variables that are “equal by deﬁmtlgn”
belong to a special class of causal identity that does not depend on modeling
choices but on the meaning of the variables. For example, the price (per dollar of
coupon payment) of a perpetual bond or consol (P¢) is, by definition, thc? inverse of
its yield (R): Pc = 1/R. Anything that affects the yield affects the price; ygt we
should not regard these variables ~ conceptually different and with different units of
measurement — as causally related. A system of equations that embedded this
identity would, according to our definitions, find P and R to be causally identical
and, therefore, not stand in any other sort of causal relationship with each other.
This is exactly as it should be.

3 The Structural Account Versus the Manipulability
Account of Causation

So far the discussion of causal order has been formal. But the importance of a
representational scheme arises from its power to illuminate genuine scientific
issues, a matter to which we now turn.

€ Causal identity can be thought of as a metaphysical property of the world and as a prf)pert}{ ofa
model or representation. Elsewhere I have argued in favor of a perspectival realism in which a
successful model tells us the truth about the world from a particular point of view (Hoover 2012b,
see also 2012c), which reduces the force of a distinction between the metaphysics and the
properties of the model.
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3.1 Modularity

I'have referred to the development of Simon’s scheme of causal representation as
the structural account of causation. While T will not discuss it in detail here, a
causal structure is, I believe, essentially what some philosophers mean when they
refer to mechanisms. A causal model is thus the representation of the workings of a
mechanism. The account is “structural,” in a formal sense, in that causal order
depends on nonunique functional relationships among variables acquiring a unique
form or structure through the specification of the parameter space. But what
are the appropriate semantjcs? That is, how in reference to the world - that is, in
reference not to the representation but to what it represents — should we under-
stand the parameters? A natural reading, suggested by Simon’s notion of an
experimenter’s ability to control or intervene directly to set parameter values, is
to regard parameters as the loci of interventions. Such an interpretation points to a
similarity to Woodward’s (2003) manipulability account of causation. While the
similarity is genuine, we should distinguish the structural account from the manip-
ulability account.

Although Woodward (2003, Chap. 2) provides a detailed and nuanced develop-
ment of the manipulability account, the essential point is conveyed in his definition
of a direct cause:

(DC) A necessary and sufficient condition for X to be a direct causes of ¥ with Tespect to
some variable set V is that there be a possible intervention on X that will change ¥ (or the
probability distribution of ¥) when all other variables in V besides X and ¥ are held fixed at
some value by interventions. (Woodward 2003, p. 55)7

Despite Woodward (2003, p. 39) regarding causation as fundamentally a type-
level relationship among variables, (DC) defines direct cause in terms of a token-
level action — an intervention.. For example, an intervention on the variable B in
Fig. 3.1 would set B to a particular value, say, B = b, and holding it fixed at that
value amounts to wiping out or breaking the arrow from A to B, indicating that no
change in A is allowed to affect B. B is a direct cause of C, according to (DC) if
C changes (or would change, the intervention being conceived of counterfactually)
as a result of this intervention.

Pearl (2000, p. 70) represents interventions by the operators “set(X)” or “do(X).”
Woodward (2003, pp. 47-48) notes “X and set X are not really different variables,
but rather the same variable embedded in different causal structures. . .” After the
intervention, we can represent Fig. 3.1 with a new graph as in Fig. 3.2. The
transition from one graph to the other — from one causal structure to another —
presupposes that the wiping out of causal arrows without affecting other parts of the
graph makes sense. Woodward refers to the property that warrants such an inter-
vention as modularity:

71 have written V where Woodward writes V, to remain consistent with the notation of Sect. 2
above.
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Fig. 3.2 Causal graph of c

Fig. 3.1 after the intervention / \

set (B= b)
‘ A b

a system of equations will be modular if it is possible to disrupt or replage (the re}ationships
represented by) any one of the equations in the system by means of an 1nt<?rvent1op on (Fhe
magnitude corresponding to) the dependent variable in that equation, without disrupting
any of the other equations. (Woodward 2003, p. 48)

And while he recognizes that representations of causal relationships may not
always display modularity, he assumes
that when causal relationships are correctly and fully represented by systems of equations,

each equation will correspond to a distinct causal mechanism and that the equation system
will be modular. (Woodward 2003, p. 49)

Cartwright (2007, part II) objects to modularity as an essential feature of
causation.® The structural account illuminates both what is right and what is
wrong in Cartwright’s objections. Cartwright denies that all well-defined causal
systems are modular. And she is correct. We should notice, first, that the system
defined by Egs. (3.13) and (3.14), which has a well-defined causal order on the
structural account, is itself not modular, since the individual equations do not
represent distinct mechanism, but can function only as a pair (see Hoover, 2011,
section 16.3.2). Cartwright herself argues largely through counterexamples. The
first example is a carburetor (Cartwright 2007, pp. 15-16). Cartwright describes the
operation of the carburetor through a system of equations in which key coefficients
depend on the geometry of its chamber”:

we can see a large number of [functional] laws all of which depend on the same physical
features — the geometry of the carburettor. So no one of these laws can be changed on its
own. To change any one requires a redesign of the carburettor, which will change the others

in train. By design the different causal laws are harnessed together and cannot be changed
singly. So modularity fails. [Cartwright 2007, p. 16]

Cartwright illustrates her point with a set of causal laws from which I reproduce

two (in an altered notation):

X < h(G,A;y), (3.22)

A < j(S8,T;0), (3.23)

where X = gas exiting the emulsion tube; G = gas in the emulsion tube; A = air
pressure in the chamber; S = suck of the pistons; T = throttle valve; and

8 Cartwright’s chapters are her side of a vigorous debate over modularity carried on with Hausman
and Woodward (1999, 2004).

°1 write “coefficients,” not “parameters” as Cartwright does, since she assumes that they are
functions of other things, violating the usage established in Sect. 2.3 above.
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N

Fig. 3.3 The causal structure
of Cartwright’s carburetor

G A
o/ N
S T
¥ = y(geometry of chamber,...), (3.24)
o = o(geometry of chamber, . . .). (3.25)

The system of equations can be represented in a causal graph as in Fig. 3.3. An
oddity of Cartwright’s exposition is that each of the principal equations has only
one coefficient. I do not think, however, that any of her critical points hang on that,
so I'will treat them as vectors: y = [y; y2] and 6 = [ 62]. In Fig. 3.3, the elements
of these vectors are listed alongside the appropriate causal arrows as indices of the
strength of the influence of each cause over its effect.'®

Cartwright’s point is that modularity requires that each cause can be intervened
upon separately. So, for example, if we wish to change A, we have to change o.
A change in o can be achieved through a change in the geometry of the chamber,
but that necessarily changes y as well; so the causal relationship of G and 4 to X is
neither distinct nor invariant with respect to that of S and T to A. Modularity fails.
(As indeed it does in the closely analogous monetary-policy example of Egs. (3.13)
and (3.14).) .

The representational conventions of the structural account force us to take a
stand on some of the details of Cartwright’s example. First, y and ¢ are not
parameters as we have defined the term (see fn. 8). Their interdependence violates
the Reichenbach Convention. We must decide, then, whether they are variables or
simply coefficients (a shorthand way of grouping parameters that interact with a
variable when writing a function). Second, the “geometry of the chamber” is
unlikely to be characterized by a single variable or parameter. In practice, the
most natural way of representing it would be as a set of interrelated variables
governed by parameters that conform to the Reichenbach Convention. Imagine
representing the geometry in a computer-automated design program. The designer
can set various parameters independently to generate various shapes that constitute
the “geometry of the chamber.” Aspects of that geometry (which can be represented
as causally salient variables) are what feed into Cartwright’s “causal laws” through
y and o.

Figure 3.3, or even a more elaborate diagram, is too coarse to represent the
refinements to the causal structure of the carburetor needed adequately to flesh out

10 . . : . . .
This makes the inessential, but in this case harmless, assumption that the equations are linear in
variables.
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Cartwright’s account of its working. The rough sketch of a structural causal
representation of the carburetor supports Cartwright’s view that in this case, as in
many others, a causally unambiguous system need not be modular.

Where Cartwright goes astray is in her belief that the failure of a well-defined
causal system to be modular in Woodward’s sense threatens an interventionist
account and not just Woodward’s particular formulation of it (the manipulability
account). The structural account is a type of interventionist account that relies
on a different sort of modularity — that is, modularity at the level of parameters.
By definition, parameters can change independently of each other. Cartwright
might object to the assumption that parameters are necessarily independent (or
variation-free). But as I previously argued, this is a matter of convention;
representations can always be formulated with variation-free parameters,
constraints having been moved into the functional relationship of variables. As a
conventional restriction on causal representation, however, modularity of the
parameters does not pack any punch: it does not tell us that a causal mechanism
can be disassembled into parts that operate independently of each other. Indeed,
modularity of that sort is not conventional but substantial and highly special. The
modularity of parameters is, nonetheless, the sort of modularity that we need to
define causal structure. The structural account allows us to see that Woodward’s
definition of direct cause is too strong; it rules out too many relationships that are
clearly causal in an obvious and practical sense.

Woodward may object to Cartwright’s implicit, and the structural account’s
explicit, characterization of an intervention. For Woodward, an intervention is
setting a variable to a value come what may — a severing of its relations to its
own causes. In the structural account, an intervention is a more delicate matter of
influencing a variable in some particular way by changing one or more parameters
in a context in which multiple parameters connected to the variable under some
functional constraints are the rule.

The failure of modularity does not depend on which notion of intervention we
employ. Wiping out a causal arrow (or equation) does not necessarily leave other
causal arrows intact. Consider the monetary-policy system (3.13) and (3.14)
referred to in our earlier discussion of the Lucas critique. The cross-equation
restriction (i.e., the appearance of A in both equations) arises because of the
assumption that agents form expectations of the path of the money supply (m,)
based on knowledge of the policy rule. Woodward’s type of intervention would
amount to setting »z, to a definite value independent of its past value — essentially
wiping out the causal arrow from m,_ to m,. Eliminating that causal arrow does not
merely imply a change in the values of the parameters of (3.14), which would be a
failure of invariance of the sort highlighted by the Lucas critique and implicit in
Cartwright’s carburetor example, it would in fact render the parameter 4 meaning-
less as it would undercut any basis for forming a rational expectation of the path of
m,. In effect, the wiping out of the causal arrow from m,_; to m, does not merely
alter the causal arrow from my, to py; it smashes it. There are plenty of real-world
examples of devices in which one part cannot be removed without breaking others,
which nonetheless possess well-defined causal structure.
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Cartwright objects to Woodward defining direct cause by interventions that set a
variable to a value come what may precisely because, as we already observed, such
interventions alter the causal system (e.g., moving from Fig. 3.1 to Fig. 3.2), even
when the other causal arrows (and the equations to which they correspond) are left
intact. We should be concerned with the normal workings of a causal system, and
the workings of some other causal system are irrelevant to them (Cartwright 2007,
p. 107; Cartwright and Jones 1991).

Another of Cartwright’s counterexamples to modularity — the operation of “a
well-made toaster” — helps to clarify the point:

The expansion of the sensor due to the heat produces a contact between the trip plate and
the sensor. This completes the circuit, allowing the solenoid to attract the catch, which
releases the lever. The lever moves forward and pushes the toast rack open.

I'would say that the bolting of the lever causes the movement of the rack. It also causes a
break in the circuit. Where then is the special cause that affects only the movement of the
rack? Indeed, where is there space for it? The rack is bolted to the lever. The rack must
move exactly as the lever dictates, So long as the toaster stays intact and operates as it is
supposed to, the movement of the rack must be fixed by the movement of the lever to which
it is bolted.

Perhaps, though, we should take the movement of the lever to the rack as an additional
cause of the movement of the rack? In my opinion we should not. To do so is to mix up
causes that produce effects within the properly operating toaster with the facts responsible
for the toaster operating in the way it does; that is, to confuse the causal laws at work with
the reason those are the causal laws at work. (Cartwright 2007, pp. 85-86)

What, we may ask, is proper operation? To ask such a question requires that we
can distinguish changes in its state that constitute its proper operation from changes
that undermine the proper operation or destroy the mechanism. Surely, such a
distinction is partly a matter of perspective and often driven by pragmatic
considerations. It requires that we be able to decide when the mechanism has
been so altered that it is effectively a new mechanism and when the mechanism
is preserved — that is, we need identity conditions for a causal system
(cf. Woodward 2003, pp. 108-109).

Cartwright uses the toaster example to argue that the relevant interventions
operate only within a context of a preserved mechanism and that Woodward’s
come-what-may interventions generally break the mechanism. While she does not
provide the necessary identity conditions, they are evident in the structural account.
Two mechanisms are causally the same when they have the same parameterization
(i.e., the same privileged set of variation-free parameters) and differ only in the
particular values that the individual parameters take within their admissible ranges.
In other words, two mechanisms are causally identical when they differ not in their
parameters or variables but in the token instantiations of their parameters and the
token consequences of those instantiations for the variables.

Another example illustrates both the pragmatic and the conceptual issue. In the
movie The African Queen, Charlie Allnut (Humphrey Bogart’s character) runs a
steamboat. From time to time the pressure in the boiler of the steam engine gets
dangerously high. He hits a particular valve with a hammer, which frees up the
valve, and allows the steam to escape. Later in the film, as part of his general effort
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to make himself and the boat more presentable to Rose Sayer (Katharine Hepburn’s

_ _¢haracter), he cleans and lubricates the valve so that the pressure is released

augtomatically without the use of the hammer.
In each case, with or without the sticky valve, the steam engine has a typical

_ operation. Which is proper depends as much on Charlie’s relationship with Rose as

on any fact about the steam engine. Charlie cleaned up is a different man; the steam
engine cleaned up is different engine. But there are important senses in which both
are still the same. In the case of the engine, if not the man, we can represent the
preserved mechanism as one in which there is a parameter (or parameters) that
governs whether the engine is in its clean or dirty state.

We may prefer one state for pragmatic reasons and, therefore, wish to analyze
the workings only within the one state. Here, John Anderson’s (1938, p. 128) notion
of a causal field is helpful (see also Mackie 1980, p. 35; Hoover 2001, pp. 41-49).
The causal field consists of background conditions that, for analytical or pragmatic
reasons, we would like to set aside in order to focus on some more salient cansal
system. We are justified in doing so when, in fact, they do not change or when the
changes are causally irrelevant. In terms of representation within the structural
account, setting aside causes amounts to fixing certain parameters to constant
values. The effect is not unlike Pearl’s or Woodward’s wiping out of a causal
arrow, though somewhat more delicate. The replacement of a parameter by a
constant amounts to absorbing that part of the causal mechanism into the functional
form that connects the remaining parameters and variables. We might, for instance,
wish to conduct our analysis of the African Queen’s steam engine entirely in the
spit-and-polished state, by setting the parameter governing the state of the valve to
clean and holding it there.

Cartwright’s toaster can be treated in the same manner. A parameter might
represent the state of the bolt holding the rack to the lever: when it takes the
value tight, the operation of the toaster is “as advertized”; when loose, it is a little
wonky; when missing, it does not pop up the toast at all. While there are purposes
for which only tight matters and for which we can treat the bolt parameter as a
constant with that value, impounding the state of the bolt to the causal field, it would
miss a critical point not to notice that broken mechanisms are mechanisms of the
same type as well-functioning mechanisms or that less refined descriptions of
mechanisms are special cases of more refined descriptions. Recognizing the first
is essential to the repairman; recognizing the second is essential to the design
engineer.

The structural account supplemented with the notion of the causal field provides
a tool through which different models, different perspectives on phenomena, may
be brought into systematic relationship one to another. It also allows us to under-
stand hierarchical relationships among causal systems stressed by Simon (1996)
and Wimsatt (2007). While the examples so far involve physical mechanisms,
economic examples abound. Cochrane (1998, p. 283) points out in a monetary-
policy system similar to (3.13) and (3.14) that « is interpreted as the slope of the
aggregate-supply curve and is typically treated by monetary economists as a
parameter; yet a body of economic theory and empirical analysis treats o as a



52 K.D. Hoover

variable, determined by “deeper” parameters (Lucas 1972, 1973; Hoover 1938,
Chap. 2). The monetary-policy system impounds these deeper parameters in the
causal field.

The monetary-policy rule in (3.13) offers another example. As written, we can
analyze the effects of different settings of the parameter 4. We can also consider an
“institutional” change in which the rule is altered to depend on different condition-
ing variables or in different ways. As it stands, these alternatives have been
impounded in the causal field. When released and represented in a model in
which (3.13) is a special case, we can consider which is the best rule within the
now wider class of rules, which contains the current rule as one parameterization
(see Woodford 2003 for an extensive discussion of optimal monetary rules).

3.2 Interventions and Identity

The structural account of causal order is similar to Woodward’s account in a
number of ways. A key difference, however, is that direct cause is not defined
with respect to a token-level notion, such as Woodward’s come-what-may inter-
vention. Direct cause is expressed instead entirely with respect to the type-level
relationship between a privileged set of parameters and a functional relation
representing the interrelationship among variables. The structural account, as we
showed in the last section, supports a notion of the identity of causal systems: two
causal systems are identical if, and only if, they differ at most by their parameteri-
zation (i.e., they differ only in the token settings of the parameters). This under-
standing of causal identity also suggests a different conception of an intervention.

The notion of a parameter developed in the structural account was inspired by
Simon’s notion of direct control and the notion that the parameter space could be
thought of as the loci of direct control. Direct control is virtually indistinguishable
from Woodward’s notion of intervention. The only question that separates them is
direct control of what? For Woodward, it is direct control of a variable; for the
structural account, it is direct control of a parameter. But a parameter was defined to
be a variable subject to some additional constraints; so the difference seems small.
I have no doubt that the experience of manipulation and control are the source of
our original intuitions about causal powers and, therefore, are important in the way
that we learn about causes and learn to use causal language. Nonetheless, the
structural account does not actually use the notion of direct control in any physical
or metaphysical sense to define causal order. For Woodward an intervention
involves a change to the bearer of a variable — a real entity. In contrast, the notion
of a parameterization does not require that we change any parameter in a temporal
or genetic sense, but merely that we consider different settings of parameters in
otherwise causally identical systems.

Woodward accepts that the relevant intervention could be hypothetical and
certainly need not be practically implementable (e.g., removing the moon to
discover its effect on the tides would be an acceptable, but hypothetical,
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intervention). Nonetheless, the counterfactual that is entertained is still a particular
_token change to a particular entity. In contrast, the structural account is a thoroughly
type-level account. The parameter space is the loci of possible interventions;
nevertheless, it is the topology that the parameterization imposes on the variables,
rather than any — even hypothetical — selection of particular parameter values that
defines the causal structure.

The difference between Woodward’s account and the structural account is
illustrated in comparative static analysis — a technique familiar to economists. For
example, we might ask, what is the effect ceteris paribus of a higher rate of inflation
on the level of prices? The answer given by the quantity theory of money is that the
level of prices is lower for the same quantity of money in circulation when their rate
of change is higher (Cagan 1956). The experiment cannot be conducted on a single,
actual economy since an increase in the rate of inflation necessarily increases the
price level. In principle, we could address the question by considering two
economies with identical causal structures differing only in the parameterization
necessary to produce distinct inflation rates and evaluate their price levels at the
time that their money stocks happen to be equal. (This is, of course, a practical
impossibility; we do not have a box of causally identical economies to draw from,
but difficulty is different from the in-principle impossibility of changing the
inflation rate without changing the price level.)** Such comparative static analysis
may be relevant to actual economies in just those circumstances that some causal
channels are so weak that we can neglect them (or impound them in the causal field)
or that we can account for them by conditioning. These are exactly the strategies
that Cagan (1956) attempts to implement in his famous paper on hyperinflations.
Comparative statics in well-formulated models are examples of a kind of
possible-worlds analysis in which the connection to our world — or at least to the
model that we take to best represent our world — is substantially more precise than
the metrics proposed by Lewis (1973, 1979). Counterfactual analysis and which
counterfactuals are sensible to address which particular problems is straightforward
in such models (see Hoover 2011).

Something like comparative static analysis is critical to design and engineering.
One might, for example, want to understand the difference in behavior of cars of the
same model, differing only in having either a four- or a six-cylinder engine.
Motivated in part by his particular conception of an intervention and in
part by an essentialist ontology, Woodward rejects the notion that such questions
are properly causal with respect to some properties, including race, sex, and
species:

the notion of an intervention will not be well-defined if there is no well-defined notion of
changing the values of that variable. Suppose that we introduce a variable “animal” which

takes the values {/izard, kitten, raven}. .. we have no coherent idea of what it is to change a
raven into lizard or kitten. Of course, we might keep a raven in a cage and replace it with a

n My view here as a shift from my earlier understanding of the causal significance of comparative
static analysis (Hoover 2001, p. 102).
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lizard or a Kkitten, but this is not to change one of these animals into another. What is
changed in this case is the content of the cage, not the animals themselves. (Woodward
2003, p. 113)

The issue arises in economic and sociological research when, for example, race
discrimination in mortgage applications or sex discrimination in employment is
assessed by sending applicants who have been matched as thoroughly as feasible
for salient characteristics, differing significantly only in race or sex, through a
mortgage qualification or hiring process. With respect to sex discrimination,
Woodward (2003, p. 115) rejects the claim “[bleing female causes one to be
discriminated against in hiring and/or salary” as “fundamentally unclear” since
“we lack any clear idea of what it would be like to manipulate it.” Woodward
argues that it is not the applicant’s sex but the employer’s beliefs about them that is
causal.

How are sex and race different from considering the causal outcomes of cars that
differ only by their engine type? Consider a coin-sorting machine — coin discrimi-
nation being less emotive than sex or race discrimination. Different coins can be
placed into the machine and fall into different slots depending on their shapes.

The mechanically relevant description of a coin is as a vector of variables — for
example [diameter, thickness, weight]. What else is it to be a coin other than having
the right values in such a vector? The social metaphysical answer might be that the
essence of being, say, a nickel is to have the imprimatur of the government (to have
been dubbed legal tender for $0.05 by the United States Mint) and to have an
appropriate standing in the social practice of money. In other contexts, such
considerations may be of genuine interest, but they are not mechanically salient.

For a causal understanding for purposes of designing, building, operating,
maintaining, and repairing the coin sorter, we do not need a penny to change into
a nickel. Each penny, nickel, dime, and quarter is just the coin in the machine — an
instantiation of a vector-valued variable and its causal fate is a realization of the
causal process represented by the causal connections among that variable and those
that describe the state of the machine.

We need to distinguish between existential and causal identity. Each may be
salient in different contexts. The critical question is which context is relevant for
what purposes. We have no notion of how to turn a penny into a nickel, but we have
a clear notion of how to change a coin from being a nickel to being a penny in the
context of the operation of a coin sorter, and it seems perfectly sensible to say that it
is “being a nickel” that is a cause of the coin falling into slot 3. Slot 3 being
configured in the right way is, of course, another cause, the causes interacting
according to the design of the machine.

How is sex discrimination different in principle from coin discrimination? In
the hiring process, we can represent people as a vector-valued variable Applicant =
[Race, Sex, Age, Employment Status, Wealth,. . .], which interacts with variables
describing the other factors and processes related to hiring. We do not need to
change a particular person from male to female to understand this causal process.
It is enough to reparameterize the vector. Much of the effort in conducting discrim-
ination research using such techniques goes in to establishing the relevant causal
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identity by closely matching relevant characteristics of different applicants — other

than the target characteristic of sex or race. Significant knowledge is obtainable in

such ways and there is no need to stigmatize its causal bona fides.

Woodward’s argument that it is the beliefs of the employer not the being female

that is the relevant causal variable does not persuade. The beliefs of employers may

be causes of the detailed outcomes of the discrimination — for example, not hiring or

paying a lower salary. The relevant question here, however, is what causes those

beliefs. The most common reason that we believe someone to be female is that she

is female. Woodward could object that it is not being female that causes the belief
but the appearance of being female. But this is just the analogue of saying that it is

not the “moneyness” of the nickel, but its physical characteristics that cause it to fall

into slot 3. The physical characteristics are the causally relevant ones. What is it to

be female in a causally relevant sense? It is to have a sufficient number of
stereotypical female characteristics. For purposes of the employment process, a
sufficiently plausible transvestite counts as female. Characteristics of actual
females determine the female stereotype — that is, why the values of certain
variables bundled in a certain way convey the appearance of femaleness. And
without the stereotype, variables with those values would not be causally salient.

(The same issue arises with the coin sorter: a slug is to a nickel as a transvestite is to
a female.)

Some entjties may have an essence that cannot be changed while maintaining
existential identity. But if, as the structural account would have it, token
manipulations are not essential to defining cause, then it is better in these cases to
say that causal identity is determined by possession of the explicitly causally
relevant characteristics and not by some sine qua non. It is also pragmatically
superior if we accept the view that knowledge is acquired in a piecemeal fashion.
As we have seen, variables such as sex or race are avoided through substantial extra
articulation and refinement of causal mechanisms, which may lack clear conceptual
or evidential foundations. What, for example, are the detailed mechanisms by
which the appearance of being female translates into beliefs and how are they
causally relevant? We may not have grounds for knowing such details and we may
not need to know them to know what is pragmatically relevant about discrimina-
tion. And if T am correct that the coin sorter is really no different in principle than
the sex discrimination case, then we would be forced to look for such extra
articulation in a vast array of cases. But if the structural account is plausible, we
can do happily without it and without the troubling requirement of token
intervention.

4 Causation and Representation

The focus of this chapter has been on representing causes. Of course, the ultimate
importance of causal analysis is not located in its representation but in discovering
what causal relationships actually obtain in the world and using those causes to
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control the world for desirable ends — what Cartwright (2007) refers to as “hunting”
and “using” causes. Either activity, however, is greatly furthered by a good repre-
sentation: think of the utility of having a good wanted poster or a good set of
blueprints. What I hope to have shown in this chapter is that a relatively straight-
forward system of causal representation can be useful in understanding and resolv-
ing substantive debates in the philosophy of causation, as well as in the actual
applications of causal inference and manipulation in economics.
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