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The paper provides a careful, analytical account of Trygve Haavelmo’s use of
the analogy between controlled experiments common in the natural sciences and
econometric techniques. The experimental analogy forms the linchpin of the
methodology for passive observation that he develops in his famous monograph,
The Probability Approach in Econometrics (1944). Contrary to some recent in-
terpretations of Haavelmo’s method, the experimental analogy does not commit
Haavelmo to a strong apriorism in which econometrics can only test and reject
theoretical hypotheses, rather it supports the acquisition of knowledge through a
two-way exchange between theory and empirical evidence. Once the details of
the analogy are systematically understood, the experimental analogy can be used
to shed light on theory-consistent cointegrated vector autoregression (CVAR) sce-
nario analyses. A CVAR scenario analysis can be interpreted as a clear example of
Haavelmo’s ‘experimental’ approach; and, in turn, it can be shown to extend and
develop Haavelmo’s methodology and to address issues that Haavelmo regarded as
unresolved.

1. INTRODUCTION

Perhaps the two most vital contributions of Trygve Haavelmo’s path-breaking,
magisterial monograph, The Probability Approach in Econometrics (1944), were
to recast the application of the theory of probability to economic data in order
to bring economic models within the scope of formal statistical analysis and to
develop a methodology of passive observation (including the contextualization of
techniques such as multivariate regression and the identification of simultaneous
systems of equations) as an analog to controlled experiments. In Haavelmo’s for-
mulation, Nature is cast in the role of the experimenter, and the econometrician
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uses a model to define a perspective or “point of view” in which the formulation
of the model and the statistical techniques applied to it play the role of exper-
imental controls (Haavelmo, 1944, pp. 1, 6, 14-15, 51).1 While the focus here
is on Haavelmo’s work it has to be emphasized that most of the concepts used
in Haavelmo’s experimental methodology originate from Ragnar Frisch’s work
in the thirties. This also applies to the concept of economics as an experimental
science (Frisch, 1932). Haavelmo’s great contribution was to translate and adopt
them into his probability framework.

It is hard to miss the weight that Haavelmo places on the notion of experimen-
tation: variants on the root “experiment” occur fifty-four times throughout the
monograph. In the first forty or so pages, most of the references are in variants on
the construction “design of experiment.” For the most part, Haavelmo simply uses
the simile of experimentation—carefully and deliberately, to be sure—to make his
methodological points and leaves the details of his understanding of experimen-
tation implicit. Our goal is to examine systematically the role that the simile of
experimentation plays for Haavelmos’ methodology of passive observation.>

Haavelmo’s rich and nuanced methodological vision offers a framework for
understanding how some modern practices neglect issues that he found to be vital.
We argue that this vision was based on the conviction that in order to isolate a true
relationship it is essential to adapt either the observational design or the theoretical
model and that only actual examination of the data can point out when and how
adaptations are required. In this sense, the process is fundamentally empirical
rather than purely theoretical. Relying on this, we reject the idea that Haavelmo is
a strong apriorist providing no account of how economists learn from empirical
analyses as opposed to merely testing (and rejecting) hypotheses (cf. Heckman,
1992, 2000; Eichenbaum, 1995).

Another goal is to demonstrate that scenario analysis in the context of the
cointegrated vector autoregression (CVAR) can be considered closely associated
with Haavelmo’s experimental methodology (Juselius, 2006, 2012).3 The CVAR
model is chosen here because it offers a structured characterization of the in-
formation in the data and, therefore, provides a very high level of generality in
which to test economic hypotheses (see Juselius, 2013). In fact, it is widely used,
although frequently in a manner that goes against Haavelmo’s vision. We argue
here that the use the CVAR model is perfectly in line with Haavelmo’s experi-
mental methodology but only if a theory consistent CVAR scenario is formulated
before estimation and testing.

A final goal is to demonstrate that Haavelmo’s experimental methodology is
still highly relevant for today’s applied economists.

2. CONTROLLED EXPERIMENTS AND PASSIVE OBSERVATIONS

Controlled experiments are a well-known method of isolating and measuring
causal processes. When the experimenter can select the controls and the inter-
vention directly, rather than passively observe them, causal direction, as well as
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co-occurrence and, in some cases, a quantitative measure of causal intensity can
be determined. Ideally, control in the controlled experiment is comprehensive.
Every relevant factor is set to determinate levels and interventions are independent
of one another and of the outcome variable. Some of the virtues of the randomized
controlled trial—often called the “gold standard” of statistical investigation—
arise from the fact that randomization helps to secure both sorts of independence.

Haavelmo (1954, p. 2) refers to structural relations as “any economic relation
associated with, and valid for, a specified economic structure that could conceiv-
ably be reproduced experimentally.** Thus, the purposes of engaging in experi-
mentation are closely related to our interest in structural relations:

The study of structural relations may serve at least these three pur-
poses:

—_—

To satisfy scientific curiosity.

2. To study the functioning of alternative structures that could have practical
interest from the point of view of economic reform.

3. To explain current events in the actual economic structure under which an

economy is at present operating. (Haavelmo, 1954, p. 2)

We interpret the first to be related to the notion that the purpose of an exper-
iment is causal articulation—to learn which causes are operative, to map their
interconnections, and to quantify their strengths. Haavelmo (1954, p. 3) goes on
to point out that our understanding of more complicated economic structures de-
rives from “piecing together relations derived from the consideration of relatively
simple partial experimental designs, or structures.” The second seems related to
the use of economic models in conducting counterfactual experiments, which fre-
quently form the basis of policy advice, and the third to prediction and ex post
analysis of the actual paths of the economy.

Empirical research in economics has been much criticized for not providing
valid answers to the above questions. Angrist and Pischke (2010) argue that over
the last decades we have seen a much stronger focus on clearly articulated re-
search designs both in experimental and quasi-experimental empirical work and
that this has resulted in a “credibility revolution” in economics. This revolution
has, however, been much more prominent in microeconomics than in macroeco-
nomics where many macroeconomists have abandoned traditional econometric
work entirely, focusing instead on computational experiments as in Kydland and
Prescott (1996). This might be because in macroeconomics controlled experimen-
tation is mostly not feasible and inference must rely on passive observations
for which a properly worked out research design is far from straightforward.
This is where Haavelmo has a strong say: as an experiment needs an experi-
menter, Haavelmo suggested that Nature may be thought of as an experimenter:
“Nature is steadily turning out [experiments] from her own enormous laboratory,
... which we merely watch as passive observers” (Haavelmo, 1944, p. 14; see also

pp. 9, 16).
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The distinction between truly controlled experimentation and passive observa-
tion is this: in a truly controlled trial, we may think of the outcome y as a function
of the intervention variable x ceteris paribus: y = f(x), with other relevant fac-
tors set at fixed levels, In the case of passive observation, we may think of the
other relevant factors as observed and brought into the function, so that they too
may vary: y = f(x,a,b,c,...). In the case of passive observation, “control” is not
so much a matter of setting particular values or literal ceteris paribus as it is ac-
counting for the variation in relevant confounding factors. Such accounting is the
natural domain of statistical analysis in which literal control can often be replaced
by conditioning on other variables.

Although Haavelmo typically refers to Neyman and Pearson as the source of
his statistical approach, the application of probability and statistics to controlled
experiments was already well developed in the 1930s, particularly in the work of
R.A. Fisher, including The Design of Experiments (1935). Haavelmo’s achieve-
ment is, in part, an adaptation of techniques to suit the special problems that
economics raises for imposing statistical controls. How can economic models be
formulated so that statistical methods would be adequate substitutes for literal
experimental control? : “we try to take care of the ceteris paribus conditions our-
selves, by statistical devices of clearing the data from influences not taken account
of in the theory (e.g., by multiple correlation analysis)” (Haavelmo, 1944, p. 17;
see also pp. 17-19).

The range of natural variation of the variables imposes an important limitation
on passive observation in comparison to active experimentation. The difficulty is
that a variable that may be causally important may nonetheless display no actual
variation. That is no problem when a model is used to simulate the actual behav-
ior of variables ceteris paribus the constant variables but it poses a much starker
problem when trying to recover the causal structure of the model from observable
data or when the model is used for counterfactual analysis that involves interven-
tions on hitherto constant variables.’

To be able to estimate economic parameters based on passive observations
Haavelmo (1944, pp. 49-50) argues that we “need a stochastical formulation to
make simplified relations elastic enough for applications”. This can be achieved
by treating the great variety of factors that have a negligible influence on eco-
nomic behavior compared to those we account for explicitly as random noise
(Haavelmo, 1943, p. 1). He observes that if a random variable has a variety of
independent sources of variation, it will conform to well-defined distributions,
such as the normal, and can be treated by the tools of probability theory and
statistics (Haavelmo, 1944, pp. 51-52). In introducing stochastic models, it may
appear that we have left the domain of ideal experiments. But this is not the
case. We do not give up on a complete characterization of the relevant variables;
rather we characterize their behavior under broader but still comprehensive cat-
egories (Haavelmo, 1944, p. 2). The move to stochastic models does not depart
from the ideal unless a more specific, nonstochastic characterization is actually
available.
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Stochastic models connect interventions and controls with outcomes and rely
on the analogy to controlled experiments in just the same way as nonstochastic
models, except that some variables must be generated as random draws from a
probability distribution. If such draws are repeated—e.g., in the manner of Monte
Carlo experiments—then a probability distribution for all the variables of a model
may be built up.

For a stochastic model that involves time-dated variables, Haavelmo (1944,
pp. 48-49) famously characterizes the realized time series as a single draw from
n-dimensional distribution rather than n draws from a one-dimensional distribu-
tion. Hence, the “class of all n-dimensional probability laws can ... be considered
as a rational classification of all a priori conceivable mechanisms that could rule
the behavior of the n observable variables considered” (Haavelmo, 1944, p. 48).6

3. THE ROLE OF MEASUREMENTS IN EXPERIMENTS

We are used to thinking of (“crucial”’) experiments as tests of the truth of a theory
or as a means of identifying causes, but many experiments presuppose the broad
truth and causal articulation of the underlying theory and seek only to quantify an
unknown value (Haavelmo, 1944, p. 14). Haavelmo’s common phrase “the design
of experiment” is deployed most often in just this latter context of quantification.
The distinction between variables and parameters is, for Haavelmo (1944, p. 3),
arelative one. Variables typically refer to the objects of investigation; parameters
are introduced by the analyst; both can be quantified using experimental methods.
Thus, Haavelmo (1944, p. 1) sees the most basic act of observation as an experi-
ment. For example, to convert a “formal mathematical scheme” such as the anal-
ysis of choice as the interaction of indifference surfaces with budget constraints
into economics, we must design the

experiments that would indicate, first, what real phenomena are to be
identified with the theoretical prices, quantities, and income; second,
what is to be meant by an “individual”’; and, third, how we should ar-
range to observe the individual actually making his choice ... In the
verbal description of his model in “economic terms,” the economist
usually suggests, explicitly or implicitly, some type of experiments
or controlled measurements designed to obtain the real variables
for which he thinks that his model would hold. (Haavelmo, 1944,

pp. 6-7)

Later Haavelmo (1954, p. 2) glosses the notion of experimental design in the
context of obtaining values for variables as “all the things one would have to
write in an instruction to even the most intelligent assistant observer in order to
communicate .. .a desired procedure of collecting appropriate data.”

Experiments used to obtain values for variables can be seen as measuring de-
vices in which an a priori experimental design is applied to the world (cf. Hoover,
1994 on the notion of “econometrics as measurement”). A priori in this case does
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not mean nonempirical nor unrelated to the acquisition of knowledge in the past,
but only that the theoretical model, the design of the measuring experiment, when
applied to the real world, provides a maintained perspective or “point of view”’—a
“classification of real phenomenal,] ... viewing reality through the framework of
some scheme” (Haavelmo, 1944, p. 1; see also p. 11):

The model thereby becomes an a priori hypothesis about real phe-
nomena, stating that every system of values that we might observe
of the “true” variables will be one that belongs to the set of value-
systems that is admissible within the model. (Haavelmo, 1944, p. 9)

Of course, a central point about perspectives is that they can be different, that
one may view reality from alternative, but no less correct, points of view.’

Haavelmo does not provide a really good concrete example of multiple, equally
acceptable perspectives; yet he does give an important general characterization in
the context of parameter estimation. We need not, he argues, work with a proba-
bility distribution (i.e., a perspective) in which a desired parameter, say, o. appears
directly: “In general, any kind of data following a probability distribution which
depends in a known way upon a, may serve as a means of estimating a, provided
that the method of estimation is based on the appropriate stochastic specification
of the data . . .” (Haavelmo, 1954, p. 5). Section 5 illustrates the point based on
one of Haavelmo’s own examples. Another example, which is not Haavelmo’s,
is the equivalence of models transformed from levels to levels and differences or
from real terms to nominal terms (see Section 6).

4. MEASUREMENT, OBSERVATION, AND TESTING

In an ideal case, Haavelmo conceives of the testing of a theoretical model as sim-
ply conducting a measurement. If the relationships and values of the theoretical
model are completely matched to the relationships and values obtained by using
the same design of an experiment but applying it to the real world, then one would
judge the model to be true: “It is then natural to adopt the convention that a the-
ory is called true or false according as the hypotheses implied are true or false,
when tested against the data chosen as the ‘true’ variables” (Haavelmo, 1944,
p- 9). Haavelmo would regard the simulation of a theoretical model that perfectly
matched the observed behavior of the variables in the world as sufficient evidence
for its truth. The issue is only slightly more complicated in the case that there are
multiple valid modeling perspectives on the data (see Section 3). In that case, so
long as we can derive the probability distribution of our theoretical model from
the one that actually characterizes the observed relationships, we may judge the
theoretical model to be true.

Theory may be incomplete or have only qualitative implications. In one type
of case, theory may determine the values of variables or parameters only loosely
or within a range. Theory may not, for example, assign a parameter a a particular
value, but perhaps only a range—say, o > 0. A successful test, then, measures



TRYGVE HAAVELMO’S EXPERIMENTAL METHODOLOGY 255

the analog to a in the world to be within that range. In a second type of
case, theory may imply only a broad property such as a homogeneity restriction
(e.g., the neutrality of money) or the selected characteristic of a probability distri-
bution. Then, a class of theoretical models, rather than a unique theoretical model,
would be supported by their consistency with the observed or measured relation-
ships (Haavelmo, 1944, pp. 82-83).

In all of these cases, the logic that relates theory to the world through the design
of an experiment expressed in a theoretical model is the same as that for observa-
tion or the collection of data discussed in Section 3. The theoretical model implies
a set of procedures that applied in ideal circumstances would elicit information
from the world. If the empirical model displays verisimilitude with respect to the
world observed according to the experimental design implied by the theoretical
model, then the theoretical model is supported. Both observation of particular
variables and testing of the model follow Haavelmo’s template for measurement,
although the one seeks to find a value, the other a relationship: “The essential fea-
ture of ... arule of measurement is that it does not a priori impose [the theoretical
restriction at stake] upon the variables to be measured” (Haavelmo, 1944, p. 13).
A genuine measurement or a genuine test might impose a particular theoretical
perspective on the data, but it must leave open alternative possibilities within that
perspective.®

The distinction between testing and observation is thus one of degree, not of
kind. When using an experimental design to measure the value of a variable or
parameter (or even a relationship), there may be no degree of freedom with re-
spect to the maintained theoretical assumptions. The measurement would not be
checkable against any other standard than its conforming to the a priori design
of an observational experiment. Such a measurement cannot constitute a test of
maintained assumptions, since it builds them in from the beginning. Only by em-
bedding those assumptions in a broader maintained or a priori framework that is
consistent with their either holding or not holding could one construct a genuine
test. Optimally, we should embed assumptions consistent with competing theories
in such a broader framework, so that rejecting one set of theoretical assumptions
may lead to the acceptance of another set. Juselius (2012) illustrates how the for-
mulation of two different theory-consistent CVAR scenarios can be used for this
purpose. This, however, is going beyond what is in Haavelmo’s methodological
framework.

What is at stake may be illustrated by an example that is not Haavelmo’s. The
United States Congressional Budget Office (1995) publishes estimates of the nat-
ural rate of unemployment. These estimates are backed out of an expectations-
augmented Phillips curve of a quite specific specification. They, thus, presuppose
the experimental design and do not provide a test of it. The Phillips curve is used
as a measuring instrument; and, while it may supply data that are used to test other
hypotheses, it is not directly involved in a test of what it estimates.’

Both tests and observations are kinds of measurements in Haavelmo’s sch-
eme. An observed variable or relationship is defined by the application of an
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experimental design to the real world. In contrast, the test is defined by the appli-
cation of the experimental design of the theoretical model to the data generated
by observation. A genuine test is possible only if the design of the test experiment
is independent of the design of the observational experiment—that is, a genuine
test requires that there is nothing in the design of the observational experiment
that guarantees its concordance with the theoretical model.

A further consequence of Haavelmo’s view is that observations are relative to
a point of view—that is, at one level or another observations build in a theoretical
perspective and none is a completely raw or free-floating fact. The real world
constrains us, to be sure, but what we see in the real world depends, in part, on
how we look at it.

5. DESIGN OF OBSERVATIONAL EXPERIMENTS

Testing for Haavelmo is conceived of as a matter of matching theoretical models
to observations, which are themselves also the product of experimental design. In
each case, our object is to provide a model of an experiment:

The idea behind this is, one could say, that Nature has a way of se-
lecting joint value-systems of the “true” variables such that these sys-
tems are as if the selection had been made by the rule defining our
theoretical model. (Haavelmo, 1944, p. 9)

But the observations must not be constructed in such a way that they neces-
sarily confirm the theoretical model. Stochastic models undermine the strategy to
the degree that any apparent mismatch between theory and observation may be ex-
plained as a rare event rather than as a failure of the model under test (Haavelmo,
1944, p. 2). Although, the details are beyond our current scope, Haavelmo’s (1944,
Ch. 4) discussion of Neyman and Pearson’s framework for statistical hypothesis
testing aims to supply practicable standards for drawing a pragmatic distinction
between events that support a match between a theoretical model and observations
and events that do not support such a match.

5.1. Apriorism and Haavelmo’s Vision of Testing

Haavelmo’s account of the ideal test provides too “clean” a view of econometric
methodology. It would be easy to read it as “a priori” theory proposes and obser-
vation disposes, which in turn supports a caricature: the economic theorist, work-
ing in isolation, passes his hypotheses to the econometrician who “[a]Jrmed with
an array of tools ... goes about his grim task — testing and rejecting models,” re-
porting “yes” or “no” but not otherwise interacting with the theorist (Eichenbaum,
1995, p. 1619).19 The vision of the econometrician as the as grim executioner of
models that fail to fit reality, gives him a role as a gatekeeper, but not as a con-
structive contributor to the accumulation of empirical knowledge (cf. Heckman,
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1992, pp. 883-884, 2000, pp. 86—87). The caricature misses Haavelmo’s actual
vision of econometric practice in two related respects.!!

First, as already noted in Section 3, a priori for Haavelmo does not imply con-
siderations independent of all empirical considerations, experience, and so forth:

It is almost impossible, it seems, to describe exactly how a scien-
tist goes about constructing a model. It is a creative process, an art,
operating with rationalized notions of some real phenomena and of
the mechanism by which they are produced. The whole idea of such
models rests upon a belief, already backed by a vast amount of expe-
rience in many fields, in the existence of certain elements of invari-
ance in a relation between real phenomena, provided we succeed in
bringing together the right ones. (Haavelmo, 1944, p. 10)

Rather “a priori” refers to a maintained perspective or point of view that (a) is
independent of the experimental design for measuring the observations on which
it will be tested and (b) allows no feedback from the current observations to the
current experimental design. Feedback from observational results to new exper-
imental designs, however, is an essential element in the growth of knowledge.
Haavelmo sees the requirement of an a priori experimental design as a condition
of interpretability. So, for example, it is only within a framework in which the
space of admissible hypotheses is set out in advance and held constant that the
notions of size and power (or type I and type II error) have precise, quantifiable
counterparts. Apriorism of this sort is part of his general view that knowledge
is perspectival: we can understand—or even properly observe—empirical real-
ity only through the theoretical framework of a well-defined experimental design
(cf. Hoover, 2012a). Such apriorism does not rule out learning from the data: “It is
clearly irrelevant how we happen to choose the hypothesis to be tested ... In par-
ticular, the hypothesis might be one that suggests itself by inspection of the data”
(Haavelmo, 1944, p. 83). This could, for example, be by graphical analysis prior
to modeling. A hypothesis that comes from an estimated model needs, however,
to be tested on new data.

Behind this view lies that Haavelmo sees economic knowledge as advancing
through the interplay of theory and observation. He quotes approvingly Bertrand
Russell (1927, p. 194; see Haavelmo, 1944, p. 14): “The actual procedure of sci-
ence consists of an alternation of observation, hypothesis, experiment, and the-
ory.” He himself writes: “In scientific research — in the field of economics as well
as in other fields — our search for ‘explanations’ consists of digging down to more
fundamental relations than those that appear before us when we merely ‘stand and
look’” (Haavelmo, 1944, p. 38). Even in the context of formal Neyman—Pearson
statistical tests, Haavelmo observes that the class of admissible hypotheses might
be incomplete and that examining the power of tests against hypotheses outside
the admissible class might be enlightening. Haavelmo’s vision is one in which
the outcomes of one experiment shape new questions, new perspectives, and new
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experimental designs—a vision that the caricature of Haavelmo’s econometrician
as the grim executioner of models steadfastly ignores.

The upshot is that rather than an overly clean view of the nature of empiri-
cal investigation, Haavelmo takes the view that the world is messy and complex
and that, even in the case of real-world controlled experiments, though especially
for the case of passive observation, empirical investigation must accommodate
that fact. With experimentation as the governing simile, much of The Probabil-
ity Approach is devoted to understanding the nature of the empirical mess and to
proposing workable strategies for managing it.

5.2. Theoretical, True, and Observational Variables

Haavelmo distinguishes three types of variables—where “variable” also com-
prises parameters and relationships—each defined in relationship to the experi-
ments in which it participates. In effect, Haavelmo sees two worlds—the world
of theory and the world of reality. The world of theory is the home of pre-
cisely defined concepts and relationships, a world undisturbed by unknown or
unaccounted for factors, a world of ideal experimentation. This world is pop-
ulated by theoretical variables. An experiment in this world amounts to eval-
uating a counterfactual claim: “the most interesting [structural relations] are
those for which the associated design of experiment consists in fixing a set of
datum-parameters or ‘independent variables,” the ‘outcome’ of the experiment
being the choice of a particular value of some dependent variable” (Haavelmo,
1954, p. 3). In the context of a formal theoretical model, such outcomes might
be deduced mathematically or simulated—in the latter case, the experimenta-
tion is literal though it takes place in an artificial world. Ideal testing, as we
saw in Section 3, amounts to establishing the perfect (or, at least, adequate
match between) the theoretical model and the measured behavior of variables in
the world.

The world of reality lacks the crisp characterization of the artificial world of
theory. In Haavelmo’s account, it is populated by two types of variables: “true”
and “observational” variables (Haavelmo, 1944, p. 5).!12 The true variables are
those that correspond perfectly to the experimental design for the measurement of
a variable.

But the theoretical variables are not defined as identical with some
“true” variables. For the process of correct measurement is, essen-
tially, applied to each variable separately. To impose some func-
tional relationship upon the variables means going much further.
We may express the difference by saying that the “true” variables
(or time functions) represent our ideal as to accurate measurements
of reality “as it is in fact,” while the variables defined in a theory
are the true measurements that we should make if reality were ac-
tually in accordance with our theoretical model. (Haavelmo, 1944,

p.5)
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Haavelmo’s point is this: ideally, the values of true variables would correspond
conceptually to the theoretical variables, but the relationships in which they stand
one with another are not built into the experimental design through which they
are measured. Rather whether true variables correspond to theoretical variables is
the central question of testing, and it must remain an open question in the design
of an empirical model to be settled only with regard to the data; otherwise, no
genuine test is possible.

The observational variables are the variables that are actually collected.
Haavelmo’s distinction is vital; for he proposes that the testing relationship is a
relationship between theoretical and true variables. If observational variables are
to be meaningful, they must correspond more or less closely to true variables. The
failure of such correspondence poses a serious methodological challenge. The re-
searcher must either assure such correspondence or find a way to compensate for
its absence.

At least three questions can be raised with respect to any variable: first, what
is it? The question has two senses. What is its value? And what is it conceptu-
ally? This is the central question in the comparison of real-world variables. Does
the observational variable capture the concept aimed at for the true variable? For
various practical reasons, it may not.

Second, how does it behave? Theoretical variables behave according to the
rules embedded in theoretical models. True and observational variables behave
according to the rules governing reality. But many features of reality may serve to
obscure or undercut the relationship between true and observational variables.

Third, what does it mean? For Haavelmo (1944, p. 6) meaning is a matter
of tested theory. Theoretical models taken as formal systems have no meaning.
The models and their variables gain their meaning through being applied to the
world, through the relationships among the theoretical variables corresponding to
those among the true variables. But this is not a one-way street. Haavelmo (1944,
p. 12) suggests that the natural history of most sciences begins with ill-formulated
metaphysical theories and are made increasingly complex to deal with the chal-
lenges posed by observational data. At some point, “clearing work is needed, and
the key to such clearing is found in a priori reasoning, leading to the introduc-
tion of some very general—and often very simple—principles and relationships,
from which whole classes of apparently very different things may be deduced.”
Theory thus helps in the conceptual understanding of true variables and, there-
fore, of the relationships among them, and consequently also in the design of
appropriate experiments to make practical observations.

An example of our own may help to clarify Haavelmo’s distinctions. Keynesian
theory classifies a person as involuntarily unemployed when he is not employed
and the real wage exceeds his marginal disutility of labor—i.e., he would like
to work at the going wage but is not offered a job (Keynes, 1936, Ch. 2). The
theoretical concept suggests an experimental design to elicit unemployment data:
people should first be divided into those working and those not working. Those
not working should be surveyed and asked whether they would be willing to
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work for the actual wage rate being paid to workers in jobs that they would be
qualified to do.

The data needed to construct the true unemployment rate would have to survey
every person in the economy. In practice, of course, there are practical difficulties.
Surveys will always be more limited, so that questions of representativeness arise.
People may not answer the survey honestly. And in a world of heterogeneous
labor, determining which of the variety of wage rates is relevant is daunting. Thus,
the observed unemployment rate may fail to conform in various ways to the true
rate. But many of the problems are remediable, so that with sufficient will and
resources, greater conformity between the two variables might be obtained.

Some of the practical problems, however, may bleed into conceptual prob-
lems. In practice, the U.S. Bureau of Labor Statistics actually conducts its sur-
veys somewhat differently (see Hoover, 2012b, Ch. 12, Sect. 12.2). They ask two
questions: are you working? And if not, have you actively sought work in the
past two weeks? The first question establishes the division of persons into work-
ers and nonworkers, and the second is supposed to establish the division between
the involuntary and voluntarily unemployed. The conceptual basis for the second
division is not the same as that proposed in Keynesian theory, so that reported
unemployment data diverge from the true data needed to test any Keynesian the-
ory involving involuntary unemployment. In practice, the mismatch may prove
inconsequential if, in fact, the time-series behavior of the unemployment data ap-
proximated that of a conceptual purer involuntary unemployment data sufficiently
well (Haavelmo, 1944, p. 7). But there are in many other cases, a range of deeper
problems, not so easily solved by an appeal to approximation.

5.3. Abstract Theoretical Models Versus Empirical Reality

The distinction between theory and model is not drawn explicitly in The Probabil-
ity Approach, but it is implicit in Haavelmo’s term “theoretical model.” Roughly,
Haavelmo treats theory as abstracted from real phenomena and, possibly, con-
ceptually incomplete. For example, economic theory may tell us that demand
and price are related inversely, but may be indifferent among further possible
concretizations—for example, among particular values for the price elasticity or
among other variables that are taken to influence demand. There exist, then, a va-
riety of theoretical models compatible with the theory. Many of these models may
be mutually incompatible. Others may form families of compatible models, the
members of which are consistent, as long as restricted to specific domains defined
by ceteris paribus assumptions. For example, a demand relationship ¢ = f(p)
may be compatible with ¢ = g(p, y), so long as they share, say, a related func-
tional form, and the appropriate ceteris paribus condition holds: y = y. This is one
sense in which different compatible perspectives on the same reality are possible.

Theoretical models posit stable relationships. A deep problem in economics
is that there is no guarantee that correspondingly stable relations exist in
reality. Haavelmo (1944, p. 13) calls relationships that in fact are stable under
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experimentation autonomous, a concept developed by Frisch in the thirties
(Frisch, 1938; see also Aldrich, 1989).!3 Autonomy is not a property of the
abstract theoretical model, but a property of observable reality. No experiments—
either controlled experiments of laboratory science or the hypothetical exper-
iments invoked in passive observation—are completely controlled (Haavelmo,
1944, p. 18). In setting up an experiment, we frequently ignore potentially in-
fluential factors because they are known to be stable or inaccessible or simply
because we are ignorant. Should these factors change, the observed relationship
will fail to be autonomous.

In the case when we know that influential factors are constant, autonomy in ob-
servational models is analogous to ceteris paribus conditions in theoretical mod-
els. A shift in the value of an influential factor shifts the domain of applicability of
the observational model. While we may account for the effects of shifts in known
factors in the observational model, whether we are able to incorporate them into
the theoretical model depends on whether they are comprehensible given the con-
ceptual resources of the theory.

Haavelmo also recognizes that autonomy can be threatened by factors that are
inaccessible to us or of which we are ignorant. Observable relationships typically
hold only in an “environment” or “milieu” the totality of which cannot be fully
specified in advance (Haavelmo, 1944, Sect. 8, 1954, p. 2) and so open up the
possibility that autonomy may fail in unpredictable ways. These may to some
degree be treated as exceptional cases and captured through statistical methods
ex post: “The construction of systems of autonomous relations is, therefore, a
matter of intuition and factual knowledge; it is an art” (Haavelmo, 1944, p. 29).
But too many exceptions, too many failures of autonomy, sap the value of the
observational model (Haavelmo, 1944, p. 25). Luck matters.

As we have seen already, testing for Haavelmo amounts to checking the match
between the theoretical model and the true model of the observations. An au-
tonomous stochastic model must, according to Haavelmo, account for the stochas-
tic behavior of the observable variables as it is in reality, not as it is posited by
some theoretical model. In the case of passive observation

we can only try to adjust our theories to reality as it appears before
us... We try to choose a theory and a design of experiments to go
with it, in such a way that the resulting data would be those which
we get by passive observation of reality. (Haavelmo, 1944, p. 14)

He argues that stochastic variables are interpretable only in a well-defined
stochastic model and “it is ... important ... not to force certain data into an
alien model” (Haavelmo, 1954, p. 6; cf. p. 5 and 1944, p. iv). A stochastic model
adequate to the observed variables can be used to test a theoretical model in
Haavelmo’s view as long as the key features of the theory are preserved in a
way that conforms both to the theoretical model and to the model of the true vari-
ables. The central difficulty of empirical research is establishing the necessary
conformity to justify tests and to make their conclusions meaningful.
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5.4. Haavelmo as an Empirical Pragmatist

Haavelmo sees empirical research as an iterative process. When the model of the
observable data does not sufficiently match the theoretical data to permit a useful
test, then there are two choices, bring the data closer to the theory or bring the
theory closer to the data. Haavelmo provides an example. Consider a theory that
the quantity of a good (y) depends on its price (p).'* The theory is realized in a
theoretical stochastic model:

A) y=ap+u

(B) p can be deliberately fixed for experimental purposes.

(C) For every fixed value of p, u is an unobservable random variable with a
known distribution which does not depend on the value of p. The u’s are
independent in repeated trials.

(D) E(y) =ap + constant
(E) « is an unknown parameter. (Haavelmo, 1954, Appendix)

Haavelmo treats the model as an experimental design in which the behavior of
the data can be determined through repeated realizations of the random term u.

Haavelmo then asks what happens if the data are not, in fact, generated in
the manner that the theoretical models supposes, but instead from a time series
process:

(@ y@) =ap@)+wi(@)+hw()

() p(t) =ppt—1)+w2(t) +kw(r)

(¢) w, w1, wy are mutually and serially independent (unobservable) random
variables with known distributions.

(d) « is the same unknown parameter as in (A). S, h, and k are unknown con-
stants. (Haavelmo, 1954, Appendix)

The second, observed model is incompatible with the first theoretical model. In
particular, as Haavelmo points out, except for special choices of the parameters,
E(y(t)) # ap + constant. To insist on using the theoretical model (A)-(E) when
it is the time-series model (a)-(d) that describes the actual behavior of the data is
precisely to force “certain data into an alien model.”

Several issues arise with respect to this example. What is the status of the sec-
ond model? Is it a new theoretical model or is it an observational model that must
be interpreted through the first theoretical model? Haavelmo is noncommittal: one
could “if one wants” offer an interpretation of the new elements of the structure.
He gives a little story; but the story draws on very different conceptual resources
than those that we usually associate with economic theory; and, in any case, it
seems to be optional. So, another interpretation would be to regard it as a purely
observational construct. One way that we could have obtained the model is
through an iterative process in which statistical tests would have revealed that key
stochastic assumptions of the first model, such as (C) the serial independence of
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the u’s, would have failed. This, however, requires that we start from the joint
probability formulation of y(¢), p(¢), and w(¢) conditional on sufficiently many
lags, such as the VAR model, in which (a)-(d) is a submodel that can be tested. If it
is accepted, (A)-(C) can then be tested as a submodel of the more general (a)-(d).
If (A)-(C) are accepted, then the conditions for estimating (A) as a single regres-
sion model conditional on p(r) would be satisfied.'> If not accepted, the second
model would, then, be a better candidate for an empirically relevant theoretical
model.

We can, therefore, think either of adapting theory to observation (i.e., replacing
the first model with the second as the theoretical model) or as providing a better
experimental design that takes account of features of the data not addressed in the
theory in such a way that we can accurately measure the true variables—in this
case, particularly, the value of a. Either way, the first model will never be accepted
on any well formulated test. Under the second way of interpreting the example,
Haavelmo’s condition (d) that asserts that the same a appears in both models can
be rationalized in the following way. The first model is rejected against the more
general second model. But the features that produce the rejection (i.e., the failure
to capture the dynamics) do not touch the interpretive core (i.e., the meaning of );
hence it is acceptable to use the simpler first model to represent a class of models
that embed the same linear law of demand and to use it for conceptual analysis.
This point is illustrated in Juselius (2014) by casting the time series model (a)-(d)
into a theoretically consistent CVAR scenario assuming that f = 1 and that the
common random shock, w, enters the analysis as an observed variable.

The key lessons from Haavelmo’s illustration are these: in order to isolate the
relevant true variables and true relationships (to control the experiment), a process
of adapting either the observational design or the theoretical model is essential.
While the adaptations can take place on either pole, only actual examination of the
data will point out when adaptations are required, so the process is fundamentally
empirical rather than purely theoretical. The relationships of stochastic variables
can be interpreted legitimately only within a stochastic model consonant with
the observable data and more general than any relationships to be tested. Some
aspects of an appropriate stochastic model may have clear theoretical interpreta-
tions, others may be at best empirically warranted, ex post adjustments that deliver
an interpretable stochastic model.

We address the way in which these features play out in the cointegrated vector
autoregression in the next section.

6. EXPERIMENTS AND CVAR SCENARIOS

The power of Haavelmo’s use of the experiment as a simile for understanding pas-
sive observation is well illustrated in the light that it casts upon “scenario analysis”
in the context of the cointegrated vector autoregression (CVAR). We examine a
concrete case: Juselius (2006, Ch. 2) and Juselius and Johansen (2006) offer a test
of monetarism using Danish data. In this section, we show how that test relates to
Haavelmo’s experimental analogy.
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Monetarism comprises, among other features, the quantity theory of money,
which implies that money is neutral in the long run though it affects real variables
in the short run (Friedman, 1956, 1969). Friedman (1956) argues that the quantity
theory depends fundamentally on the notion of a stable demand-for-money func-
tion that comprises a transactions demand dependent on nominal income and,
therefore, in aggregate on real GDP and the price level, and an asset demand for
which there are two relevant margins: between money and (i) real goods with an
opportunity cost measured by the rate of inflation and (ii) other financial assets
with an opportunity cost measured as the yield differential between an alternative
asset and money.

Monetarism is compatible with a variety of relationships among real and nomi-
nal variables in the short run (Friedman, 1974). As we saw in Section 4, Haavelmo
does not argue that a theory tested through an experimental design must be com-
plete. Rather the theoretical model may exemplify a class of models with specific
generic features leading to a test of a class of models. We note that, in addition, to
the quantity theory, most versions of monetarism also subscribe to two doctrines
that are related to the quantity theory in various ways: first, Irving Fisher’s hypoth-
esis that a nominal interest rate is the sum of an independent real rate of interest
and an inflation rate; and, second, the expectations theory of the term structure of
interest rates. Our focus is on long-run versions of these doctrines as well as of the
quantity theory of money. In addition, many macroeconomists treat the quantity
theory as requiring a minimum of two independent types of shock—demand and
supply shocks. We also restrict our attention to versions of monetarism in which
the rational-expectations hypothesis holds.

Haavelmo’s notion of the design of experiments already constrains the formu-
lation of a model of the true variables. On the one hand, the true variables must
be adequate counterparts of the theoretical variables; and, on the other, the ob-
servational variables must adequately represent the true variables. Furthermore,
the model must be general enough to allow a generic test of the key theoretical
relationships. The design strategy thus operates along two margins governing the
relationships (i) between the theoretical and the true variables and (ii) between the
true and the observed variables. The observed Danish counterparts to the theoret-
ical variables in Juselius (2006) are: the logarithm of the M3 monetary aggregate
(m), the logarithm of real gross national expenditure (y”), the logarithm of the
gross national expenditure deflator (p), the own yield on M3 (R,,), and the yield
on a long-term government bond (Rp). Of course, the inflation rate is then Ap;
the real stock of money, m — p; the opportunity cost against real goods (the real
short rate of interest), R,, — Ap; and the opportunity cost against financial assets,
Rp — R,,,. With respect to the first margin, the conceptual match between the theo-
retical variables (broad money, the general price level, level of activity, and oppor-
tunity costs) and the true variables is reasonably good. However, the underlying
theory is not completely specific and, we could, for instance, make other choices
of variables for, say, the long-term rate of interest or the price level with equal
claim to being true variables. With respect to the second margin, even taking these
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particular choices as given, we cannot rule out some deviation between the actual
measurements of these variables and the ideally correct measurements. Haavelmo
characterized the difference between the true and the observational variables in
the following way:

The “true”variables are variables such that, if their behavior should
contradict a theory, the theory would be rejected as false; while “ob-
servational” variables, when contradicting the theory, leave the pos-
sibility that we might be trying out the theory on facts for which
the theory was not meant to hold, the confusion being caused by
the use of the same names for quantities that are actually different
(Haavelmo, 1944, p. 7).

A test of monetarism requires a model of the true variables in which particular
monetarist claims may or may not hold. A VAR representation of these data pro-
vides a very high level of generality in which to frame such a test. It is a structured
characterization of the information in the data. The VAR model can be written as

xl:/’t0+H1xt—l++Hkxt—k+(DDt+8ta tzl: 2)"" Ts (1)

where x; is a vector of variables, i is a vector of constants, D; is a vector of deter-
ministic terms (such as trends and dummy variables), ¢, is a vector of identically
distributed normal random variables, and IT and @ are matrices of parameters; all
of conformable dimensions; and there exists a sufficient set of initial conditions
for the lagged x’s. The VAR is similar to, though more general than, Haavelmo’s
(1954) dynamic demand model (see Section 5), although both models are more
general than the ones that Haavelmo (1944, 1954) typically contemplates, since
each is compatible with all the variables, except the deterministic terms, being
endogenously determined.'®

To provide an adequate account of the stochastic mechanism, we must, on the
one hand, provide an adequate empirical characterization of the data and, on the
other hand, transform it into a perspective in which the theoretical and true rela-
tions among the data can be compared. Such a framework in which theory can be
brought to bear on the appropriate data is essential; for as Haavelmo observes:

A sample of observations is just a set of cold, uninteresting numbers
unless we have a theory concerning the stochastic mechanism that
has produced them. (Haavelmo, 1950, p. 265).

The design of the experiment in Haavelmo’s view involves establishing a per-
spective on the data in several stages. The VAR model in (1) provides a concep-
tual framework. The first stage uses misspecification tests to determine whether
the model is an adequate description of the data. If not, it must be turned into
one through further specification for which the tests may provide some useful
guidance. But we note that (1) is not perfectly general, as we have supposed lin-
earity in parameters. Linearity is a perspective imposed on the data that could
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correspond to a true feature of the world, but which may also work only when
a first-order Taylor expansion is an adequate approximation to an inherently
nonlinear economic model. Also, in practice, we contemplate a restricted set of
deterministic variables, such as constant, trend, and dummies. Furthermore, for-
mulating an adequate model of the true variables is a process that is informed by
the actual properties of the observed data:

The economist ... is presented with some results which, so to speak,
Nature has produced in all their complexity, his task being to build
models that explain what has been observed. (Haavelmo, 1944, p. 7).

To secure a stable well-formulated stochastic structure, such as Haavelmo re-
quires for interpretability, it may be necessary to control for changes in the envi-
ronment (such as reforms, interventions, wars) through additional variables (such
as step or impulse dummies) or additional lags. In some cases, the precise vari-
ables, lags, or functional forms may be anticipated on the basis of background
knowledge or shrewd theoretical insights, but in others, it will be a matter of ex
post adjustments to the actual behavior of the observed data informed by either
general characteristics of the data or by formal specification tests. (See Juselius,
2006 for a more detailed account of the formulation of an adequate VAR
representation.)

At this stage, it is essential to follow Haavelmo’s advice to use the conceptual
resources of economic theory to design an experiment that is statistically ade-
quate and, at the same time, formulated in a manner that the key propositions of
the theoretical model can be adequately represented and tested. We refer to this
formulation as a scenario—that is, a concrete specialization or set of restrictions
on a more general stochastically and observationally adequate representation of
the observed data that corresponds to the distinguishing features of the theoret-
ical model. The general representation is, thus, the controlled framework within
which the experiment is run, and the scenario is the experiment to be run within
that framework. This seems to be a good candidate for a better research design for
macroeconomics as asked for by Angrist and Pischke (2010).

To turn to the specific case, the long-run relationships of monetarism are natu-
rally expressed as cointegrating relationships, so it is natural to reformulate equa-
tion (1) as a CVAR:

Ax;=po+ap'xi—1 +T10x-1+OD; +¢4, (2)

where for p variables and r cointegrating relationships, IT = oc,b’/ and o and S are
p X r matrices, r < p, and f’x, defines the stationary combination of nonstation-
ary variables. Here both for ease of exposition and because a VAR in levels with
only two lags characterizes the Danish data well, the CVAR is formulated with
only one lagged difference.

It is useful to also represent (2) in its inverted form in which the variables are
expressed as a function of shocks and deterministic components:
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where C = 1 (a1 (I —T1)BL) a1, measures the long-run impact of a shock

to the system; C* (L) (¢; + ® D;) is a lag polynomial describing the impulse re-

sponse function of the stochastic shocks, ¢;, and deterministic shocks, D;; and X 0

contains the initial values, xo_x_1, of the process and the initial value of the short-

run dynamics C* (L) eg. The representation (3) describes a decomposition of the
t

vector process, X;, into stochastic trends, C Y &, deterministic trends, C uot, cy-
t=1
cles, C* (L) &, and irregular components, &, and D;.

As a first step to bring the general CVAR perspective to bear on monetarism, we
let x; = [my, pr, y), Rm.t»Rp 1]’. We note that statistical tests suggest the variables
are nonstationary: that p and m are I(2) and the remaining variables are I(1). This
leads to a tentative decomposition of the data vector into two stochastic trends,
one deterministic time trend, and a stationary cycle component:

my; c11 diy dip ‘ 81

P 1 | s dardyy || 2 82
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where X is a catch-all for stationary components and initial values. The specifica-
tion is constrained both by facts about the data, particularly the integration prop-
erties, and background assumptions to the monetarist scenario, particularly the
assumption of two autonomous shocks—an aggregate demand or nominal shock
(u1,;) and an aggregate supply (or real) shock (u2 /). Under the testable assump-
tion that m; and p; are I(2), the nominal shock, u1 ;, cumulates twice to describe
a second-order stochastic trend in money and prices and once to describe a first-
order stochastic inflation trend. The real shock, u> ;, cumulates once, consistent
with the real variables being I(1). The linear deterministic trends for m,, p;, and
y; reflected in assumption that g, g2, g3 # 0 corresponds to the fact that the av-
erage growth rates of m;, p;, and y/ are significantly different from zero. For the
Danish data, it is also necessary to include one step-dummy in the cointegration
relations to account for the change in the equilibrium mean associated with the
deregulation of capital movements in 1983 which caused (i) a strong reallocation
of money holdings; (ii) a change in the inflation rate; and (iii) a change in the risk
premium of the interest rate spread.

A formulation such as CVAR model (4) addresses one of Haavelmo’s (1954,
Appendix) concerns (discussed in Section 5), that models would very commonly
be driven by common shocks. He worried that this would be a confounding fea-
ture that would stand in the way of recovering the underlying structure from the
observations. While the concern is a live one for stationary data, for nonstationary
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data, nearly the opposite is the case: cointegrating relations among variables with
genuinely common stochastic and deterministic trends are easier to observe and
cointegrating relations among variables with unrelated stochastic trends are eas-
ier to reject than for long-term relationships among stationary variables (see the
discussion in Juselius, 2013). Nonstationarity amounts to Nature performing very
dramatic experiments that reveal, rather than cloak, structure. They also help to
resolve another of Haavelmo’s characteristic concerns—the idea that a potentially
important casual variable might show too little variance either to be an important
actual cause or to support a precise parameter estimate. Again, because the vari-
ance of nonstationary series increases over time, we generally do not have to wait
very long for potential factors to be revealed. This is because parameter estimates
among nonstationary variables are superconsistent, converging at a rate of 1/7T
rather than 1/+/T as with stationary variables.!”

CVAR model (4) turns out to be an observationally consistent description of the
Danish data. It is, at once, constrained enough to characterize the data and flexible
enough to provide a key part of the experimental design—the controlled frame-
work in which characteristic monetarist propositions can be tested. The other key
part is the monetarist scenario itself: the long-run neutrality of money implies
that money and prices are homogeneous of degree one; a stable long-run demand
for money implies that velocity is stationary; the expectations-theory of the term
structure implies that the differential between short and long rates of interest is
stationary; and the Fisher hypothesis implies that the real rate of interest is sta-
tionary. More explicitly the theory-consistent CVAR scenario has to be consistent
with the following conditions:

(i) m; and p; are homogeneous of degree 1, the neutrality of money

(i) m—p—y" ~1(0), the velocity of money
(i) Ry — Ry ~ 1(0), the term structure
iv) Ry —Ap~1(0), the Fisher hypothesis

(v) expectations are rational.

The assumption of homogeneity can be formulated as the restriction c¢!! = ¢!2

in CVAR model (4). In practice, the neutrality between money and prices
(Condition (1)) is accepted for the Danish data. It allows us to impose a useful
simplification on CVAR model (4) that amounts to a more restrictive change of
perspective. Under this assumption, Kongsted (2005) shows that CVAR model (4)
can be reformulated in an (almost) equivalent form:

m; — p; di —da dip —dp ' 81— &
Ap; €21 0 Z Uy 0
i | = d3 dyn || 5! +1| & t + Xo, %)
R da dop | | D uz 0
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where all variables are now at most I(1).
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Incorporating these assumptions as restrictions on CVAR model (5) results in a
model consistent with the monetarist scenario:

me — pt 0di2 t g
Ap; c1 O Z uy,i
v =] 0de |||+ 5+ X, (©6)
Ry a1 0| Dun, 0
Ry s c 0] L=l 0

where real income and real money stock share the real stochastic trend, > u2 ;,
and the deterministic time trend; and inflation and the two nominal interest rates
share the nominal trend, > uy ;.

We have, so far, ignored the stationary components of the data in CVAR models
(4) - (6). An important feature of the CVAR formulation is the dichotomy between
the long-term, nonstationary component and the short-term, stationary compo-
nent. The superconsistency of the parameter estimates among nonstationary vari-
ables allows a substantially independent analysis of the nonstationary component.
The error-correction of deviations from cointegrating relationships is one of the
forces that affects short-term adjustment behavior, as, in effect, these deviations
are another element of the stationary component. Because of the superconsistency
of the parameter estimates of the cointegrating relationships, the stationary com-
ponent can be analyzed as a second stage of a complete analysis conditional on
having adequately identified the cointegrating relationships.

The long-term monetarist scenario defines a class of models compatible with
a variety of short-term specifications. For example, an extended monetarist sce-
nario, including the hypotheses that money causes prices in the long run and that
money causes nominal income in the short-run, would be evaluated in a model
that specified both the contemporary and lagged dynamics of the variables. We do
not, however, pursue these extensions here.!8

The actual empirical investigation of Danish data shows that each of the key
monetarist relationships in conditions (ii)—(iv) is too persistent to be stationary
(Juselius, 20006, p. 188). Although this is an important negative result, at least for
a particular class of monetarist theories, such results may more generally yield
positive information. For example, the fact that some cointegrating relationships
are supported and others contradicted for a particular scenario could suggest the
empirically relevant direction in which it would be helpful to reformulate the the-
oretical model. More concretely, in a version of monetarism with rational expec-
tations, just the fact that an ex post step dummy variable is necessary to formulate
an adequate stochastic specification (as in the Danish data) helps to direct fur-
ther investigation. The usual approaches to rational expectations (condition (v))
assume stationary probability distributions in order to apply the law of iterative
expectations (Sargent, 1987, Ch. 3; Sargent and Lundqvist, 2004, Ch. 2). A loca-
tion shift in the stochastic trend violates this assumption (Hendry and Mizon,
2010). There are several approaches that might be taken to address this issue
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within a rational-expectations framework: for example, restricting the scope of
rational expectations to the periods between location shifts as in Lucas (1976) or
modeling learning as in Sargent (1994) or Evans and Honkapohja (2001). Another
alternative, the imperfect knowledge economics (IKE) of Frydman and Goldberg
(2007, 2011), is compatible not only with the structural breaks in 1983, but also
with the positive finding of persistence in the real interest rate, the term spread,
and the velocity of money. These further approaches call for new experimental
designs and the evaluation of new scenarios.

7. ECONOMICS AS AN EXPERIMENTAL SCIENCE: HAAVELMO’S
VISION AND THE CVAR

The scope for actual experimentation in economics is limited. Nonetheless,
Haavelmo found the simile of the controlled experiment to be a fruitful way to
formulate a positive methodology of passive observation. Unfortunately, the con-
structive aspects of Haavelmo’s methodology have frequently been neglected to
the point that it has been caricatured as the almost wholly negative view of the
economist as the grim executioner of theories (Johansen, 1995). Haavelmo has
been thought to advocate relying on a nonempirical, a priori economic theory to
propose hypotheses that are then accepted or rejected mechanically on the basis
of statistical tests. Such a characterization is wide of the mark.

Haavelmo in fact provided a subtle account of the constructive interplay be-
tween theory and observation. In his account, experiments are designed using
theoretical perspectives and revised and elaborated in light of the observational re-
sults of those experiments. Passive observation is understood through analogy to
experiment in which statistical techniques serve a similar function to experimen-
tal controls, while the interplay between theory and observation is fundamentally
similar to the case with actual experiments. Haavelmo’s ideas illuminate the prac-
tice of a theory-consistent CVAR scenario, which in turn pushes the experimental
analogy beyond the point that Haavelmo left it six decades ago. But it is still
true to Haavelmo’s vision of how to test a theory based on passive observations
in the sense that (i) it is based on a well-defined stochastic model that embeds
the theory model in a broader empirical framework, (ii) it represents all key fea-
tures of the theory that are testable, it checks whether theoretical statements are
empirically meaningful, (iii) it checks whether all empirical claims are internally
consistent, (iv) it represents a binding constraint on the admissible results for a
given theory to be empirically relevant, (v) it is a safeguard against reliance on
tests which only make sense in isolation but not in the full context of the empiri-
cal model, and (vi) it is often informative about how to modify the theory model
when the correspondence between the theoretical and observed structure is weak.
In Haavelmo’s words:

we can only try to adjust our theories to reality as it appears before
us. And what is the meaning of a design of experiment in this case. It
is this: We try to choose a theory and a design of experiments to go
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with it, in such a way that the resulting data would be those which we
get by passive observation of reality. And to the extent that we suc-
ceed in doing so, we become masters of reality — by passive agree-
ment. (Haavelmo, 1944, p. 14)

NOTES

1. Morgan (1990, Ch. 8) provides a now standard account of these developments in the history of
econometrics; see also Hendry, Spanos, and Ericsson (1989) for a précis of the main achievements of
Haavelmo’s Probability Approach.

2. Boumans (2005, 2012) has previously treated related aspects of Haavelmo’s methodology and
Juselius (1993, 2006) has referred briefly to Haavelmo’s discussion of experiments, but provided no
systematic analysis.

3. Juselius (1999, 2006, 2013) and Juselius and Franchi (2007) discuss or offer examples of sce-
nario analysis, but do not relate it to Haavelmo’s simile of experiments.

4. Haavelmo’s (1954) unpublished paper was written ten years after the publication of The Proba-
bility Approach for the meeting of the Econometrics Society in Uppsala. It provides a nicely concise
exposition of some of the ideas already found in the earlier monograph, as well as raising some new
issues. Structure and structural relations are concepts that already appear in the monograph, but are
more central in the later paper (Haavelmo, 1944, pp. 26-30, 37, and 51).

5. The pitfalls of such counterfactual analysis were addressed directly in Marschak (1953) and
have become a mainstay of macroeconometric thinking since acquiring the name “noninvariance” or
“Lucas critique” (Lucas, 1976).

6. The details of Haavelmo’s effort to bring probability to bear on economic time-series are ad-
dressed more fully in Juselius (2014).

7. Hoover (2012a) develops the idea of a perspectival realism such as Haavelmo suggests here.
Haavelmo uses the term “point of view” rather than “perspective”; yet his perspectival realism is clear,
especially when statements such as this, “The notion of constancy or permanence of a relationship is,
therefore, not one of pure theory. It is a property of real phenomena as we look upon them from the
point of view of a particular theory” (Haavelmo, 1944, p. 13) are combined with his notion that the
autonomy of economic relations is a matter of degree, depending on the observational context and
the purposes of the investigation (Haavelmo, 1944, Sect. 8, esp. pp. 27-28; see also Section 5 of this
article).

8. Haavelmo (1944, p. 66; cf. p. 10) sees the relationship between measurement and testing as so
close that he refers to estimation as “a particular form of testing hypotheses.”

9. See Boumans (2005, Ch. 5, Appendix) for a useful discussion and another example. Duarte and
Hoover (2012) provide another relevant example in the use of economic models to measure shocks.

10. See Hoover (1994) for a general discussion of apriorism in econometrics.

11. Eichenbaum’s and Heckman’s views are discussed in greater detail in Hoover (2013).

12. Haavelmo is fond of scare quotes. Partly, this is a matter of personal style, but the fact that
they are most consistently used with reference to epistemological concepts, such as truth and reality
possibly reflects a fear of committing himself in fraught philosophical debates (see Hoover, 2012a).
Not sharing his diffidence, we shall not adopt his practice.

13. Haavelmo (1944, p. 27) writes that relationships are autonomous when they “describe the func-
tioning of some parts of the mechanism irrespective of what happens in some other parts.” Experimen-
tal interventions, which are changes in the “other parts” of a structure, can rely on the stability of the
autonomous relations. More formally, Haavelmo (1944, pp. 27-28) defines the degree of autonomy
with respect to the size of the class of structures for which a particular relation holds. An experiment
can be seen as choosing an element of a class of structures, and a relationship is autonomous if it
contains “all those—and only those—structures that satisfy [that] particular relation ‘A’”—that is, the
relationship is definitionally stable with respect to the experimental intervention.
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14. Haavelmo actually writes x rather than y in initially defining the quantity demanded, but he
writes y in the actual demand functions and in all but one other case in working out the example.
It appears to be a slip, and we write y consistently.

15. See Hoover, Johansen, and Juselius (2008) for a similar analysis of another example.

16. Haavelmo typically refers to endogenous variables as dependent (e.g., Haavelmo, 1944, p. 22)
and exogenous variables as independent (e.g., pp. 22, 73), autonomous (e.g., p. 83), or datum-variables
(Haavelmo, 1954, p. 3).

17. The superconsistency of estimates also eliminates simultaneity bias in cointegrating relation-
ships, which was another of Haavelmo’s (1943) central concerns (see Juselius, 2014).

18. Giese (2008) provides an illustration, using a similar scenario analysis to investigate a common
specialization of the expectations theory of the term-structure model in which, in addition to their
cointegrating relationship, the short rate of interest causes the long rate. She rejects the relevant zero
restriction and, indeed, finds evidence for the weak exogeneity of long rates.
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