
OXFORD BULLETIN OF ECONOMICS AND ST^XTISTICS 50 ^ (1988)
03(15-9049 $3.00 ' " , -uy6«i

ON THE PITFALLS OF LTŝ TESTED COMMON-
FACTOR RESTRICTIONS: THE CASE OF THE

INVERTED FISHER HYPOTHESIS

Kevin D. Hoover^

A common approach to single-equation time-series modelling is to start
a static regression suggested by some economic theory; to estimate it using
ordinary least squares; and, if the Durbin-Watson statistic is sufficiently below
two, suggesting serial correlation in the residuals, to re-estimate it using a
Cochrane-Orcutt transformation. Then, if the Durbin-Watson statistic looks
respectable, one proceeds to hypothesis testing on the basis of the estimated
standard errors of the coefficients of the (transformed) static regression. The
Cochrane-Orcutt transformation imposes a common-factor restriction on the
estimated regression. Although it is well-known that such restrictions may not
be justified, the ease with which they are imposed in common econometric
computer packages and the fact that many econometrics texts present the
Cochrane-Orcutt transformation and its generalizations as a panacea for
serial correlation means that unwarranted common-factor restrictions are
routinely and wrongly imposed. It is too rarely appreciated that unwarranted
common-factor restrictions may lead an investigator to draw false statistical
inferences — sometimes the opposite of what the data in fact support.

In this paper, we shall review the theor)' of common factors. We shall then
ilustrate a case of a wrongly-imposed common-factor restriction using
Carmichael and Stebbing's (1983) paper in support of the inverted Fisher
hypothesis. Finally, we shall use the same data to illustrate a constructive
alternative to blithely imposing common-factor restrictions.

t. THE COCHRANE-ORCUTT TRANSFORMATION AND COMMON-FACTOR
RESTRICTIONS

A simple two-variable static regression model may take the form

>>,= ao-l-a,x,-i-c,, (1)

On estimating such a regression, an investigator may discover that the esti-
mates of E, are serially-correlated. Econometrics textbooks tell him that serial
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correlation in the residuals produces inefficient estimates of the parameters
U;., and «, and biased estimates of their standard errors, seriously intcriering
wixh hypothesis testing;e.g., .lohnston, 1972, pp. 246-49;.

The simplest model of serial correlation is thai it is first-order autoregres-
sive — i.e.,

E, = pe,...i + v,, (2)

where v, is assumed to be a serially uncorrelated random error. Adopting this
model as his working hypothesis, the investigator can then apply a Cochrane-
Orcutt transformation (usually by altering a single parameter in a regression
package). The Cochrane-Orcutt transformation lags equation (1) by one
period, multiplies through by p and subtracts the new equation from (1) to
yield

The error term of equation (3) is serially uncorrelated ex hypothesi; and
consistent and efficient estimates of the parameters, HQ, OJ and p, can be
recovered from estimates of equation (3). Of course all of the desirable
properties of the transformed estimates of (1) rest on the truth of the untested
assumption that its error follows the stochastic process described in (2).

The practice of ridding regressions of serial correlation through Cochrane-
Orcutt transformations rests on an odd notion of the nature of random error.
It assumes that, when a regression such as (1) is found to have serially-corre-
lated residuals, it should still be taken to be correctly specified as far as it
goes. The only problem is to guess the nature of the stochastic process
generating the error term in order to supplement the original equation — as if
serial correlation were a natural process independent of the variables of the
regression. The usual justification for equations such as {1) is that they are
derived from theory. It is odd that few attempts are made to derive supple-
mental processes such as (2) from any theory.

A more reasonable view of random error would be that the estimated
residuals are measures of our ignorance of the correct specification of the
underlying process that generates the data. Then the discovery of serial
correlation indicates that our regression is misspecified, that there are syste-
matic improvements to be made in our specification. An equation such as (1)
would need to be respecified so that its residuals were not serially correlated.
The respecified equation would not necessarily be correct; although the
original equation was certainly wrong.

This alternative view would work backwards from the usual practice.
Suppose that a careful specification search yields

y,=h+Pxy,-t+p2X^PiX,., + w, (4)

as a form with no serial correlation (among other desirable properties).
Comparing (4) term by term with (3) shows that, if /3,=p, ^z= aj and

i, then (4) could be simplified to (1) supplemented by (2) (with a
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gain of efficiency, since there is one fewer parameter to estimaiei. Another
way of saying this is that equation (3; is equation ',4' subject \o the ccmumvi-
[acior resirictioii, Piii^— ~/3;,. Such a restriction is imposed ever}' lime the
Cochi ane-Orcutt transformation is performed.

The Cochrane-Orcutt transformation is, therefore, sometimes a 'con-
venient simplification' of a more general equation (see Hendr}- and Mizon,
1978). This view of common-factor restrictions is already evident in Sargan's
(1964) seminal paper, and is typical of the 'British' or 'LSE approach' to
econometrics (see Gilbert 1986a, b). The critical feature of this approach,
however, is that a common-factor restriction should be imposed only when
valid. And validity can be tested using standard X" or F-tests against the
alternative hypothesis that an unrestricted equation is correct.

The Cochrane-Orcutt transformation imposes the simplest common-
factor restriction. To generalize, consider the model

A{L)y, = B{L)X,+ v,, (5)

where J4(L ) is a 1 x 1 polynomial in the lag operator, L{Lz, — z,_,); i3(L ) is a
ix k polynomial in the lag operator; Z, is a ^ x 1 vector of independent
variables; and v, is a residual, serially uncorrelated by construction (i.e.,
through the choice of parameters for AiL) and B(L)). Common factors
occur whenever A(L) = O and B{L ) = 0 have roots in common: there are as
many common factors as there are common roots. By dividing through by the
common factors, the number of parameters to be estimated is reduced with a
gain to efficiency.

To return to our earlier example, equation (4) may be written as (5)
with A(L) = (l-i3,L), B{L) = [po, (MP2 +PsL)] and X=[l, xl If the
common-factor restriction, /3,^2==~^i> is correct, then B{L) =
[A,,(i32-j6|iS,L)] = (l-i3,L)[A,/(l-y3,L), fiil Dividing both sides of (5)
through by the common factor, (1 - jijL), yields

y=[M^-p,L ), p^ll, xj'+ v,/(l - AL ) (6)

where K = PJ{l-piL) = constant and e, = vj{ 1 - ^ iL) .
Obviously y, = ( l - ^ j L ) £,= £,-i3j£,^i or

£, = A f , - i + v,. (7)

Equations (6) and (7) have precisely the same form as equations (1)
and (2):

K = a,), P2 ~ Gi and ^, = p .

IL THE INVERTED FISHER HYPOTHESIS

Common-factor restrictions, if they are valid, provide convenient simplifica-
tions of general forms such as (4) and (5), If they are not valid, imposing them
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through Cochrane-Orcutt transformations may seriously mislead the investi-
gator. To illustrate this, we examine Carmichael and Stebbing's (i983i
attempt to test the inverted Fisher hypothesis. CarmichaeJ and Stebbing are
not singled out as having committed an error any more egregious than other
practitioners; but rather as providing a clear illustration, with a well-defined
hypothesis, of how an invalid common-factor restriction can reverse the
apparent thrust of empirical evidence.

The Fisher theorem states that, in long-run equilibrium, the market rate of
interest should move directly with changes in the rate of inflation. Carmichael
and Stebbing (1981, p. 7) argue that, with no uncertainty, optimization
requires the real after-tax rate of interest to equal the real rate of return on
non-interest-bearing money — that is, minus the rate of inflation. This implies
the 'inverted Fisher hypothesis': the nominal rate of interest is independent of
the rate of inflation and the after-tax real rate of interest inversely reflects the
rate of inflation.

Using data for the US three-month Treasury bill and the consumer price
index for the period 1953:I-1978:IV, Carmichael and Stebbing specify a
static equation of the form*

(8)

where YT is the after-tax rate of return (see Darby, 1975), and INF is the rate
of inflation. The inverted Fisher hypothesis implies a, = - 1; while Fisher's
own hypothesis implies Ox =0. Carmichael and Stebbing's estimates of e in
equation (7) are seriaDy correlated. They therefore perform a Cochrane-
Orcutt transformation and re-estimate (8) (Carmichael and Stebbing, 1983,
Table 1). Their estimate is reproduced with complete summary statistics as
regression A.I of our Table 1:

(YT-INF)=1.19-1.02INF,p = 0.997. (A.I)

The coeiBcient on inflation is nearly negative one, which seems to support
the inverted Fisher hypothesis. And the autocorrelation coefficient is nearly
one, which suggests to Carmichael and Stebbing that A.I could be re-esti-
mated in first differences (reproduced as A.2, Table 1):

A(YT-INF)=-1.02AINF. (A.2)

again apparently confirming the inverted Fisher hypothesis.
Equation A.I is nested in

(YT-INF)= 70+ yilNF-l- y^INF^j -f-y3(YT-INF)_, H- «, (9)

Equation (8) is (9) subject to the common-factor restriction that
7i 73 = — 72- The column labelled 'COMFAC in Table 1 tests this restriction.
It is decisively rejected at every conventional level of significance.

' Carmichael and Stebbing's (1983) original data (1953:1-1978:IV) is used throughout this
paper. Consult that paper for sources and definitions.
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Because p==l, A.1 is essentially a random walk, and the variance of
(YT-INF) is not well-defined. The sipiificance levels of tests based on A.I
are thus doubtful. Nevertheless, conditional on A.I the COMFAC test is as
valid as any that Carmichael and Stebbing perform.

To avoid this problem, we may concentrate our attention of A (YT-INF)
as in A.2. This implies (as of course does A. 1 with p = 1) that there is no long-
run relationship between the levels of YT and INF. Even so A.2 is also nested
in (8): y,, ="0' fi'^ Ji and 73 = 1. The COMFAC test decisively rejects these
restrictions as well. Carmichael and Stebbing's equations are clearly mis-
specified.

in. RBSPECIFICATION OF INTEREST RATE DYNAMICS

How important is this misspecification? We answer this question by trying to
specify a better equation using a general-to-specific modelling strategy (see
Hendry and Richard 1982; Hendry 1983 and 1986; and Gilbert 1986a). We
restrict ourselves to the time period and the variables used in Carmichael and
Stebbing's paper.

The specification search begins with a vector autoregression [VAR(4)] of
YT on a constant, four lags of itself and the current value and four lags of INF
and TAX (the marginal tax rate used to construct YT), estimated for the
period 1954:1-1975 :rv (twelve quarters of data are reserved for a Chow test
of out-of-sample parameter constancy — a test both for stability and to
prevent illicit data-mining (Harvey, 1981, pp. 181-182). Owing to multicol-
linearity, VAR (4)'s coefficients are virtually uninterpretable but its R- = 0.91,
SER = 0.44 and Sum of Squared Residuals = 13.36. A Chow test for out-of-
sample parameter constancy F(12, 70) = 0.80 shows that the hypothesis of
structural stability cannot be rejected at any conventional significance level.'

The most parsimonious representation of VAR(4) uncovered through the
specification search is reproduced from Table 1:

AYT= 2.46-0.37 YT_,+0.13 INF_,+0.05AINF (B.I)
(0.66) (0.08) (0.03) (0.03)
[0.59] [0.10] [0.04] [0.03]

- 5,14 TAX_ J + two seasonal dummies
(1.73)
[1.42]

R2 = 0.29; SER= 0.42; AR(4): F(4, 77) = 0.69;

CHOW: F(12,81)= 1.09

This is a 'levels-and-differences' form, which allows the relationship to
have a well-defined long-run solution, while at the same time adequately

- For the whole sample: R2 = 0.91, SER = 0.43, RSS = 15.18.
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capturing shorl-run behaviour (see Harvey, 1981, pp. 290-92). Neither the
null hypothesis of no serial correlation of up to fourth order (AR(4)) (Harvey,
1981, pp. 276-77) nor the null hypothesis of no autoregressive conditional
heteroskedasticity (ARCH) (Engle, 1982) of up to fourth order can be
rejected at the 95 per cent level. The hypothesis of normal residuals (Jarque
and Berra, 1980) cannot be rejected at the 95 per cent level, which suggests
that the F-test are appropriate. The close correspondence of the usual form
of the standard errors (parentheses beneath the estimated coefficients) with
the heteroskedasticity-corrected forms (square brackets) shows that heter-
oskedasticity is not a problem (White, 1980). The Chow test of out-of-sample
parameter constancy cannot reject the null hypothesis of stable parameters
and lends some support to belief that desirable properties of this equation are
not artefacts of its construction but correspond to the underlying reahty.-̂

Equation B.2 reports the same specification estimated over the entire set
of available data. Its properties are similar to B. 1 in every respect:

AYT= 2.35 - 0.37 YT_, + 0.13 INF_ i + 0.05 AINF (B.2)
(0.63) (0.07) (0.03) (0.03)
[0.57] [0.09] [0.03] [0.03]

- 4.88 TAX^, + two seasonal dummies
(1.66)
[1.37]

R- = 0.27; SER= 0.42; AR(4):F(4,89) = 0.88;
Normality: X—5.00; ARCH: F(4, 89)= 1.29

Eleven restrictions must be placed on VAR(4) in order to derive B.I or
B.2. The test of the null hypothesis that these restrictions are valid (reported
in Table 1 as 'Nexted in VAR(4)') cannot be rejected at any conventional level
of significance.

While it is possible that a more parsimonious model than B.2 is a valid
restriction of VAR(4), it is clear that we cannot reject the h3'pothesis that B.2
encompasses its obvious rivals (see Hendry and Richard, 1982. pp. 16-20).
Equation C.I has the same form as A.2, but is estimated over the same period
as VAR(4) and B.2 (1954:IV-1978:IV). Equation C.2 is the best equation
found with an error-correction term for inflation, which ensures that the
Fisher hypothesis holds in the long run (Salmon, 1982 and Har\'ey, 1981, pp.
290-92). Both equations are rejected against VAR(4) at the 99 per cent con-
fidence level. In contrast, equation B.2 cannot be rejected at even the 95 per
cent level against VAR(4). Furthermore, B.2, C.I and C.2 are all nested in
B.3, which is B.2 with the addition of the third, insignificant seasonal dummy.

''While its R- is very low compared to ¥AR(4) or A.I and A.2, this is simply an artefact of
specifying the dependent variable as a first difference of the nominal rate. Judged more
accurately by the standard error of regression, equations B.I-3 are the best fitting regressions
reported in Table l .R ' for B.],reconiputed:interms ofleveis, is0.91.
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Equation B.2 cannot be rejected as a valid restriction of B.3; while C.I and
€.2 can be rejected at the 99 per cent level (see the column 'Nested in Equa-
tion B.3' in Table 1). We are justified, then, in tentatively accepting B.2 as the
best parsimonious representation of VAR(4).

What difference does this result make to the inverted Fisher hypothesis?
Obviously, it does not hold in the short run as Carmichael and Stebbing take
their results to imply. Fisher took his own theorem as a theoretical conclusion
about long-run equilibrium. Let us then calculate the static long-run solution
to B.2:

YT= 6.35 +0.35 INF-13.19 TAX (lQ)

Equation (10) indicates that while the inverted Fisher hypothesis as stated by
Carmichael, and Stebbing is not supported by the data, neither is Fisher's
theoretical prediction that nominal interest rates reflect inflation one for one
in the long run. Only 35 per cent of an increase in inflation seems to be
reflected in the long nin in rate of interest. With a mean lag of 2.32 quarters
in B.2, the effect of inflation on interest rates is also not immediate. While
these results may bring little comfort to stipporters of extreme forms of either
hypothesis, they are qualitatively the same empirical results reported by
Fisher (1930, p. 451) himself.

IV. SHOULD WE STOP HERE?

Carmichael and Stebbing's claim that the evidence supports a radically dif-
ferent understanding of the relation of interest rates to inflation than has been
widely accepted in the profession is unsupported. They are misled, specifi-
cally, by the habit of applying the Cochiane-Orcutt transformation without
testing the implicit common-factor restriction and, generally, by inattention to
dynamic specification. We are entitled to ask, however, if we can rest easy
with the specification of equation B.2. Unfortunately, the answer is, no.

One symptom of a misspecified regression is the instability of the coef-
ficients out-of-sample. Carmichael and Stebbing tested the within-sample
stability of A.I and A.2 with a Chow test. Table 1 shows that another Chow
test cannot reject the hypothesis of stability' of these regressions over twelve
quarters beyond a baseline regression running from 1953.1 to 1975.IV. But
these are minimal tests at best. Figure 1 presents a more searching test of C.I,
which has the form of A.2 but which, like B.1-3, is estimated over 1954.1-
1978.IV. Figure 1 graphs the sequence of Chow test statistics scaled by their
5 per cent significance levels, so that unity represents rejection at the 95 per
cent level. Successive points on the graph are the Chow tests for parameter
constancy of a baseline regression (1954.1-1958.11) against longer and longer
samples (1954.1 to /, where /= 1958.III, 1958.IV,..., 1978.1V ).̂

'' The statistic used is Chow's (1960) first test, see pp. 594,595 and 598.
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Scaled by 5 percent critieal value

1961 1964 1967 1970
Fig, 1.

1973 1976 1979

The graph clearly shows rejection of stability in the early and later years of
the sample period. Further evidence against Carmichae! and Stebbing's speci-
fication.

Figure 2 presents the same sequential Chow tests for our preferred equa-
tion B.2. Stability cannot be rejected at any point in the sample period,
lending further support to B,2.

The sequential Chow test with a constant base is not the only possible one.
One alternative is a one-step-ahead Chow test in which the base advances
one period for each test in the sequence (i.e., the sequence of regressions
1954.1 to t, where /'=1958,n, 1958,111, ..., 1978.III, is tested against the
regression 1954.1 to t+l). The results of this test for C.I are reported in
Figure 3. Stability is clearly rejected in the earliest observations and again for
much of the later period. Figure 4 reports the same test for B.2. Although
stability is not rejected in the early observations, it is frequently rejected for
much of the later period. The rejection frequency of this test should be
around 4 {5 per cent of 80).

A third alternative Chow test, tests a sequence of base periods from
1954.1-1958,11 to the end of the sample against the entire sample period (i,e,,
the sequence of regressions 1954.1 to f, where 1"= 1958.11, 1958.III, ,..,
1978.111, is tested against the regression 1954.1 to 197S.IV). Figure 5 reports
this test for C.I. Once again stability is rejected in the earliest observations. It
is also rejected in the middle of the sample, although not al the end. Figure 6
reports the same test for B.2. Again, stability cannot be rejected in the early
observations; but it is clearly rejected in the middle of the sample.
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Scaled by 5 percent critical value

1961 1964 1967 1970 1973 1976 1979

Fig. 4

Scaled by 5 percent critical value
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Scaled by 5 percent criticai value

1961 1964 1967 1970 1973 " ' 1976 1979

Fig. 6

These more rigorous tests of stability show that B.2 performs better,
althou^ not decisively better, than C.I. This suggests that it too is misspeci-
fied. Given the nature of the specification search, it seems unlikely that a
greatly superior specification is to be found using only Carmichael and
Stebbing's data. The evidence of misspecification stjggests that proper
specification will probably be had only if our nets are cast wider and other
factors besides inflation and marginal tax rates are considered as deter-
minants of interest rates.

University of California, Davis, CA 95616

Date of Receipt of Final Manuscript: October 1987
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