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Abstract

Graph-theoretic methods of causal search based on the ideas of Pearl (2000),
Spirtes et al. (2000), and others have been applied by a number of researchers
to economic data, particularly by Swanson and Granger (1997) to the problem
of finding a data-based contemporaneous causal order for the structural vector
autoregression, rather than, as is typically done, assuming a weakly justified
Choleski order. Demiralp and Hoover (2003) provided Monte Carlo evidence
that such methods were effective, provided that signal strengths were sufficiently
high. Unfortunately, in applications to actual data, such Monte Carlo simula-
tions are of limited value, as the causal structure of the true data-generating
process is necessarily unknown. In this paper, we present a bootstrap proce-
dure that can be applied to actual data (i.e. without knowledge of the true causal
structure). We show with an applied example and a simulation study that the
procedure is an effective tool for assessing our confidence in causal orders identified
by graph-theoretic search algorithms.

I. Identification of the structural vector autoregression

The structural vector autoregression (SVAR) has become a workhorse of empirical
macroeconomics. The main hurdle to using the SVAR is to identify the system so that
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unique random shocks can be associated with particular variables. While other iden-
tification schemes are available [e.g. Blanchard and Quah (1989) identify the SVAR
from assumptions about long-run properties], the most common scheme — and the
only one that we address here — achieves identification through imposing exclusion
restrictions on the contemporaneous variables.

It is widely believed that identification depends on a priori assumptions. On
the contrary, starting with Swanson and Granger (1997), a number of authors have
demonstrated how graph-theoretic techniques can, in some cases, use the data
themselves to identify the SVAR. These methods exploit patterns of conditional
independence in the data. In cases in which unique identification is not possible,
they may nonetheless reduce the class of admissible identifying assumptions
considerably.'

Demiralp and Hoover (2003) provide Monte Carlo evidence that, as long as
signal-to-noise ratios are high enough, these graph-theoretic methods can recover
effectively the true contemporaneous structure of SVARs. Monte Carlo results are
too often specific to particular simulations and do not necessarily provide generic
guidance. To remedy this problem, we develop a bootstrap method that allows
one to assess the reliability of a data-based identification scheme for arbitrary
structures.

Bootstrap methods are typically used either to provide asymptotic refine-
ments for test-statistics or to allow the computation of standard errors (or test
statistics) for complicated, and analytically intractable, objects. By contrast, in a
similar spirit to Fair (2003), we use the bootstrap as a distribution-free method
to simulate a complete macroeconometric model to study its robust characteris-
tics [Fair likens the approach to the simulation methods of Adelman and Adel-
man (1959).] Like Fair, we do not provide a theoretical analysis of the valid-
ity of the bootstrap for this problem. Instead, we offer a heuristic procedure
that is justified by its success at mimicking Monte Carlo simulations where the
true results are known. Because the causal structure of a macroeconomic model
is multifaceted, our procedure does not aim at a unidimensional test-statistic
but at displaying the distribution of relevant outcomes, which must be assessed
informally.

We show that this technique allows us, in cases in which we do not know the
true underlying structure, to present simulation evidence that closely mimics Monte
Carlo simulations for which we know the underlying structure ex hypothesi. It

! Graph-theoretic methods are relatively new in economics, although increasingly used in other fields from
sociology and psychology to medicine and biology. Hoover (2001, ch. 7) provides a critical description (see
also Hoover, 2003, 2005). LeRoy (2002) has recently discussed them in a review of Pearl (2000). There
have been relatively few applications of graph-theoretic search algorithms to economic data. Some examples
include Sheffrin and Triest (1998), Akleman, Bessler and Burton (1999), Bessler and Loper (2001), Yang
and Bessler (2004), and Haigh, Nomikos and Bessler (2004). Swanson and Granger (1997), Demiralp (2000,
ch. 4), Bessler and Lee (2002), Yang and Bessler (2003), Haigh ef al. (2004) and Awokuse (2005) are partic-
ularly concerned with the causal order of the VAR.
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therefore allows us to give reasonable assessments of the reliability of data-based,
graph-theoretic identifications of SVARs.
The SVAR can be written as:

AY, =AY, -1 +E, (D)

where Y, is an N x 1 vector of contemporaneous variables, A, is an N X N matrix
with ones on the main diagonal and possibly non-zero off-diagonal elements, A(L)
is a polynomial in the lag operator, L; and E; is an N x 1 vector of error terms with
E=[E,],t=1,2,...,T and the covariance matrix ¥ = E(EE’) diagonal.> The indi-
vidual error terms (shocks) can be assigned unequivocally to particular equations
because X is diagonal. The matrix A, defines the causal interrelationships among the
contemporaneous variables.

Premultiplying equation (1) by A,' yields the reduced-form or vector auto-
regression (VAR):

Y, =A;'AL)Y,_, +A;'E,=B(L)Y,_ + U, (2)

with U=[U,],¢t=1,2,...,T. While equation (2) is easily estimated, the covariance
matrix, A=E(UU’) in general will not be diagonal, so that it will be impossible
to evaluate the effects of shocks to particular variables. The identification problem
reduces to this: if we know A,, then it is easy to recover equation (1) from our
estimates of equation (2); but how do we know A,?

Identification schemes typically start with the property that X, the covariance
matrix of E,, is diagonal. True identification would permit us to transform equa-
tion (2) into equation (1) and recover the diagonal X. There are a large number
of N x N matrices, P; such that the covariance matrix Q= E(P; 'U(P; 'UY) is diag-
onal. Let P={P;} be the set of all such orthogonalizing transformations. Each
element of P can be thought of as a potential candidate for A,. Most commonly
economists have based their choices of P; on highly informal arguments appeal-
ing to general plausibility or weak theoretical considerations. Typically, although
not uniformly (see, for instance, Bernanke and Mihov, 1998), they have restricted
themselves to just-identified, lower triangular matrices. These are based on the
Choleski decompositions of the covariance matrix of U. There are, in general, n!
such matrices, each corresponding to one Wold- or recursive causal ordering of the
variables in Y.

We too restrict ourselves to recursive orderings, but widen the class of pos-
sible matrices to include the over-identified — that is, to matrices that may have
zeroes among the off-diagonal elements of P;. Although the class of models that
we consider is narrower than the class of all economic models, it is a significant
generalization relative to the class of Choleski-ordered models that continues to

2In practice, the SVAR can include deterministic components (constants, seasonal dummies, trends, and so
forth), but these are suppressed for clarity of exposition.
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dominate SVAR analysis. We suggest below that our methods may give some insight
into non-recursive models as well, while leaving a more formal extension to future
work.

Graph-theoretic search algorithms work according to the following general plan:
the true A, induces a set of conditional independence relations among the elements
of U,. The algorithm thoroughly tests for conditional independence relations among
the estimated U,. It then selects the class of P; (or, if one is lucky, the unique P;) —
that is consistent with those independence relations.

The Monte Carlo simulations of Demiralp and Hoover (2003) generate data
from a variety of known specifications of SVARs like equation (1) and then ad-
dress the question of how successfully A, can be recovered from estimates of VARs
like equation (2). The problem for empirical analysts is to evaluate the reliability
of such identifications when A, and, indeed, the entire specification of the SVAR
is unknown. We employ a bootstrap strategy. Starting with the original data, we
estimate the VAR (equation 2) and retain the residuals U= [U,] t=1,2,...,T. To
maintain the relationships of conditional independence among the contemporan—
eous variables, we resample the residuals by columns from U. The resampled resi-
duals are used in conjunction with the coefficient estimates of equation (2) to
generate simulated data. A large number of simulated data sets are created. For
each one, we run the search algorithm, record the results, and compute summary
statistics.

Graph-theoretic, causal search algorithms are increasingly used in biological
sciences, physical sciences, and social sciences other than economics. And while
there are by now a number of applications within economics, the ideas behind graph-
theoretic search algorithms are not well known among economists. Consequently,
we begin with a review of the basic ideas behind the algorithms. Both the search
algorithm and the bootstrap procedure that we propose to evaluate our confidence in
the outcome of the search are best understood in a concrete example. We, therefore,
illustrate both with the same data set used in Swanson and Granger (1997). The cen-
tral question of this study is, how reliable is this bootstrap procedure? We conclude
with a simulation study that addresses that question.

II. The causal search algorithm

To keep things simple, assume that the variables are a cross-section with an inter-
esting causal structure, but no time-series structure. The most fundamental notion
is that causally related variables are connected by edges. On the one hand, if the
direction of causal influence is ambiguous the edge is shown as a line or undirected
edge. On the other hand, if it is determinate, then an arrow head indicates the causal
direction, and the edge is referred to as directed. Sprites, Glymour, Scheines (2000)
and Pearl (2000) show how the mathematics of graph theory relates a graphical
representation of causal relations to implications for the probability distributions of
the variables.
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Suppose that A — B — C (that is, 4 causes B causes C). 4 and C would be proba-
bilistically dependent; but, conditional on B, they would be independent.® Similarly
for A < B+« C. In each case, B is said to screen A from C. Suppose that 4 «<— B — C.
Then, once again 4 and C would be dependent; but, conditional on B, they would be
independent. B is said to be the common cause of A and C. Suppose that 4 — C «— B
and that 4 and B have no direct edge between them, then C is an unshielded
collider on the path ABC. When A and B are connected through an unshielded
collider, they are independent on some set of variables that excludes C and its descen-
dants (i.e. variables that have C as a direct or indirect cause); but they are dependent
conditional on this set plus C.* (A shielded collider would have a direct edge
between 4 and B and would, therefore, be dependent whether or not one conditioned
on C.)

Causal search algorithms use a statistical measure of independence, commonly
a measure of conditional correlation, to check systematically the patterns of condi-
tional independence and dependence and to work backwards to the class of admissible
causal structures. (Absence of conditional correlation is a necessary, but not suffi-
cient, condition for statistical independence.) We employ the SGS algorithm of Spirtes
et al. (2000, pp. 82—83). The SGS algorithm is a close relative of the PC algorithm
(Spirtes et al., 2000, pp. 84-85).° Demiralp and Hoover (2003) investigated the PC
algorithm using Monte Carlo methods. The SGS algorithm assumes that graphs are
acyclical (what VAR analysts typically refer to as ‘recursive’) — that is, there are no
loops in causal chains such that an effect feeds back onto a direct or indirect cause.
Acyclicality rules out simultaneous equations. The SGS algorithm proceeds in three
stages:

Stage 1. Elimination of Edges

1 Start with a densely connected graph in which each variable is assumed to be
connected by an undirected causal edge to every other variable.

2 Test for the unconditional independence of each pair of variables, eliminating the
edge in the graph whenever the absence of independence cannot be rejected.
(While the SGS algorithm per se may be implemented with any suitable test
of conditional independence, we follow the common practice of using a test of
conditional correlation.)

3 Test for the independence of each pair of variables conditional on a third vari-
able, again eliminating the edge if absence of independence cannot be rejected.

3This and the next five paragraphs are based closely on Hoover (2005, pp. 71-74).

4To get an intuition for this consider 4 = the presence of a mouse, B = the setting of mousetrap and C = the
springing of the mousetrap. The mouse may appear randomly, and the trap may be set randomly; in which case,
A and B should be independent; but, conditional on C, the trap actually springing, 4 and B will be correlated:
the trap must be set to spring and is, once set, more likely triggered by a mouse than by any other factor.

SBoth the PC and SGS algorithms are based on classical hypothesis testing. Some contributors to the
literature on graph-theoretic causal modelling have moved to Bayesian scoring criteria; see, for example,
Chickering (2002).

®Unconditional independence can be thought of simply as independence conditional on the null set of other
variables.
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Continue testing pairs conditional on pairs, triples, quadruples and so on until
the graph is pared down as far as the data permit.’

Stage 2. Statistical Orientation of Edges

4 For each conditionally uncorrelated pair of variables (i.e. ones without a direct
edge) that are connected through a third variable, test whether they become cor-
related conditional on that third variable. If so, the third variable is an unshielded
collider. Orient the edges as pointing into the unshielded collider.

Stage 3. Logical Orientation of Edges

5 If there are any pairs 4 and C that are not directly connected but are indirectly
connected 4 — B—C, then orient the second edge towards C, so that the triple is
A—B—C.

6 If there is a pair of variables, 4 and B connected both by an undirected edge and
a directed path, starting at 4, through one or more other variables to B (i.e. a
path in which the arrows all orient in a chain), then orient the undirected edge as
A— B.

Steps 14 are statistical; the next two steps are logical. Step 5 follows logically,
because orienting the undirected edge in the other direction would turn the pattern
into an unshielded collider, which would have already been identified in Step 4. Step
6 follows because orienting the undirected edge in the other direction would, contrary
to assumption, render the graph cyclical.

The SGS algorithm can be illustrated with the example in Figure 1. Panel A shows
the graph of the data-generating process. It determines the patterns of conditional
dependence and independence that the tests should find, small-sample problems to
one side. The graph corresponds to a particular matrix

1 0 0 0
0 1 0

0
AO_ Ayw QAyyx 1 oy
1

azw 0 dzy

where the variables are ordered WXYZ, the rows correspond to effects and the columns
to causes and the a;; to the non-zero elements.

Step 1 starts with panel B in which each variable is connected to every other
variable by an undirected edge. Step 2 eliminates edge 1, because W and X are

"This step distinguishes the SGS algorithm (Spirtes et al., 2000, pp. 82-83) from the more commonly used
PC algorithm (Spirtes et al., 2000, pp. 84-85; Pearl, 2000, pp. 49-51; Cooper, 1999, p. 45, figure 22; Demiralp
and Hoover, 2003, pp. 766—-767). The PC algorithm tests independence between two variables that had been
connected by an edge in the previous round conditional only on variables that were themselves adjacent to one
of the two variables in the previous round. The SGS algorithm tests the pair of variables against every set of
variables of the right number for that round, whether or not they were connected to the test pair in the previous
round. The SGS algorithm may detect conditional independence better in the presence of nonlinearities, but
its computational complexity rises exponentially even when the true underlying graph is sparsely connected.
Comparison of our results in section 4, especially Figures 6 and 7, with those of Demiralp and Hoover (2003)
confirm that the two algorithms generate similar results for small numbers of variables.
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Figure 1. (a) The causal data-generating process; (b) densely connected skeleton

unconditionally uncorrelated in the true graph. Step 3 eliminates edge 5 (X and Z are
uncorrelated conditional on Y). Step 4 orients edges 2 and 3 towards ¥ (W and X are
correlated conditional on Y —i.e. Y is an unshielded collider on WYX). Step 5 orients
edge 6 towards Z. Step 6 orients edge 4 towards Z. The algorithm is able to recover
the true graph.

Not every true graph can be recovered uniquely. A graph and a probability distribu-
tion are faithfil when the independence relationships in the graph stand in one-to-one
correspondence with those implied by the probability distribution. The skeleton of a
graph is the pattern of its causal linkages ignoring their direction. The observational
equivalence theorem (Pearl, 2000, p. 19, Theorem 1.2.8) states that any probability
distribution that can be faithfully represented by an acyclical graph, can be equally
well represented by another acyclical graph with the same skeleton and the same
unshielded colliders. For example, consider two graphs: (i) 4 — B« C — D and
(i) 4 — B « C <« D, which differ only in the direction of the right-most arrow. Both
have the same skeleton and only one unshielded collider, B on the path ABC. The
observational equivalence theorem shows that they have the same likelihood.

A graph identical to panel A of Figure 1 except that edge 6 was reversed has the
same skeleton and same unshielded colliders as in Figure 1. However, as it is cyclical
(W —Y —Z— W), it violates a premise of the observational equivalence theorem.
And Step 6 of the algorithm rules it out.

The observational equivalence theorem implies that all Choleski (i.e. just-
identified acyclical) orderings are observationally equivalent, as their graphs are
densely connected and have no unshielded colliders. This means that graph-theoretic
methods can identify the skeleton, but not the causal ordering, when the underlying
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data-generating process is Choleski. However, even small numbers of overidentifying
restrictions may sometimes permit complete ordering.

III. An application of the bootstrap procedure

Swanson and Granger’s (1997) essential contribution was to realize that identi-
fication of the SVAR depends only on the contemporaneous relations of condi-
tional and unconditional independence among variables and that the VAR itself
filters out the lagged dynamics so that the residuals of a well-specified VAR (the U,
in an estimated version of equation 2) capture the relevant contemporaneous char-
acteristics of the original variables. Each element of ﬁ, can be thought of as a
filtered variable purged of its time-series properties. A graph-theoretic search algo-
rithm can then be applied to attempt to recover the causal order among these
filtered variables. If the lag length and deterministic components are chosen appro-
priately, the filtered variables will be stationary, even when the original data
are not.

In one case, Swanson and Granger (1997, pp. 362-363) applied this filtering
method and a causal search algorithm to updated quarterly data previously inves-
tigated by King et al. (1991). Swanson and Granger’s VAR used eight lags of the
logarithms of real per capita consumption expenditures (C), real per capita gross
private domestic fixed investment (/), per capita real balances (M) and real per
capita private gross domestic product (Y) for the period 1949:1-1990:2. Swan-
son and Granger’s algorithm restricted attention to linear chains in which each
variable was allowed at most one direct cause (e.g. 4 — B — C — D would be
admissible, but 4 — B« C — D would not). With this restriction, their algorithm
considered only measures of zero-order (i.e. unconditional) and first-order indepen-
dence, which they implemented using tests of correlation between two variables
conditional on a third, ignoring unshielded colliders. They identified the skeleton of
the graph as M—C—I[—Y. Appealing to the extra-statistical assumption that at least
one of M, C or I should cause Y in the current period, they oriented the edges
as M — C — 11— Y. Demiralp and Hoover (2003, pp. 762-763) applied the PC
algorithm to similar data for the period 1949:1-2002:4 and identified the structure
shown as heavy black lines in Figure 2. (Sources and construction of these data are
described in Appendix A.)

But what confidence should anyone place in the identification selected by the
algorithm? We use the bootstrap procedure to evaluate the selected identification.
Appendix B reports the details of the bootstrap procedure. Here, we provide only a
sketch.

We start with the VAR that is used to identify the causal order. A bootstrap real-
ization is created by using the estimated coefficients from this VAR as well as its
matrix of residuals (U) resampled by columns with replacement. For each bootstrap
realization, a new VAR is estimated and the matrix of its residuals (U) is retained
as the time series of the filtered variables. These are then fed into the SGS search
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MCY: 64 MIY: 6
ICM: 20

84/67/18

87/75/-100

100/68/-99 6/100/-100

100/40/-95

Y M
0/— ~/— -

Figure 2. Causal order for King et al. (1991) data. Notes: See text (section II) for a description of
the SGS search algorithm and Appendix B for a description of the bootstrap procedure. See Appen-
dix A for data definitions and sources. Causal connections selected and oriented by the SGS search
algorithm shown as black arrows; those omitted as grey lines. Triples associated with each edge
are Exist/Directed/Net Direction, where Exist =the percentage of bootstrap replications in which an
edge is selected; Directed = edges directed as a percentage of edges selected; Net Direction = difference
between edges directed low-to-high (—) and high-to-low (<), where higher variables are the more clock-
wise starting in the upper left corner (at C), as a percentage of the directed edges. Circled variables are
found as unshielded colliders on paths, and with rates (percentage of replications) as indicated in boxed
notes. Any unsheilded collider found in fewer than 1% of replications is omitted. Data may differ from
values computed from Table 1 due to rounding error

algorithm and the results are recorded. We construct 1,000 bootstrap realizations and
record the outcomes of the search.

The bootstrap results are displayed in Table 1, which gives the complete distri-
bution of outcomes for each possible edge. The column headed No Edge displays
the percentage of bootstrap realization for which an edge was not found. The other
columns each refer to possible orientations of the edge and report each as a percentage
of the total number of realizations in which some edge was found.

An undirected edge (—) implies that the algorithm cannot select a unique causal
direction, so that ceteris paribus the selected graph identifies an equivalence class
with one member with the edge directed one way and the other with the edge reversed.

A bidirectional edge («+) appears to violate the assumption of acyclicality. The
algorithm sometimes may select a bidirectional edge nonetheless, because it orients
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TABLE 1

Bootstrap evaluation of the SGS-selected causal order for the King et al. (1991)
data set

SGS-selected Edge identification
causal order (per cent of bootstrap realizations)
Edge direction - — No edge — —
C — I 28 23 16 33 0
C — M 22 65 13 0 0
C — Y 32 67 0 1 0
1 no edge M 0 6 94 0 0
1 — Y 61 39 0 1 0
M no edge Y 0 0 100 0 0

Notes: Based on 1,000 bootstrap realizations. Entries in bold type correspond to the
SGS-selected direction. See text (section II) for a description of the SGS search algo-
rithm and Appendix B for a description of the bootstrap procedure. See Appendix A for
data definitions and sources.

edges based on triples of variables, rather than on the whole graph. Inconsistencies
can arise for three reasons. First, they may be artefacts of small samples. Secondly,
and more interestingly, practitioners of graph-theoretic methods have seen them as
evidence of omitted latent variables in otherwise acyclical graphs (see Scheines et al.,
1994, 90 pp.). Thirdly, economists naturally may interpret them as evidence of simul-
taneous causality. This is an especially attractive option if we are willing to maintain
the assumption of causal sufficiency — that is, no variable that is a parent of at least
two other included variables is omitted.?®

The results give strong support for the skeleton identified in Figure 2. That skele-
ton omits two edges, and the bootstrap typically omits those edges as well: between /
and M in 94% of the realizations and between M and Y in 100% of the realizations.
The highest number of omissions for any of the edges in the selected skeleton is 16%,
and two edges are never omitted.

The data are repackaged in Figure 2 to provide easy-to-grasp summary statistics.
These are not formal test-statistics, but simply aids to understanding the meaning of
the primary data in Table 1. Each edge is associated with a triple Exists/Directed/Net

8The assumption of causal sufficiency is a strong one. Economists often think in Walrasian terms: everything
depends on everything else. If taken seriously, no small model could ever be causally sufficient. But econo-
mists as diverse as Simon (see Simon and Rescher, 1966) and Friedman (1949) have taken the view that most
causal connections are sufficiently weak that they can be ignored. A small model can be a good one, provided
it captures the variables that are strongly connected relative to the variables of interest. In practice, the SVAR
literature implicitly endorses causal sufficiency when it imposes diagonal covariance matrices as part of the
identification strategy. Of course, it is always open to object that a model is too simple; but then we ought to
be able to demonstrate the empirical superiority of a broader model in which the simpler one is nested, in the
spirit of encompassing (cf. Hendry, 1995, ch. 14). Another approach, familiar in the graph-theoretic literature
on causal search, is to employ algorithms that allow for latent variables (see inter alia Spirtes et al., 2000,
ch. 6). While we believe that it would be fruitful to investigate these approaches in a similar context to the
present paper, the assumption of causal sufficiency is not unreasonable for present purposes. The scope and
limitations of Walrasian modelling assumptions in a causal context are explored more fully in Hoover (2001,
ch. 4, especially section 4.4; cf. Hoover, 2006).
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Direction. The first number, Exists, is the percentage of realizations in which an edge
is found (i.e. it is the complement of the No Edge value). The second, Directed, indi-
cates the percentage of existing edges for which there is a definite direction — that is,
the sum of the three columns headed ‘—’and ‘<’ and ‘<’ divided by (1 — No Edge).
Finally, Net Direction indicates the difference between unidirectional edges going
from earlier to later ordered variables and those going from later to earlier as a per-
centage of the directed edges — that is, the difference between the columns headed ‘—’
and ‘<’ divided by the sum of the same two columns. The order of variables is that
shown in the left-hand column of Table 1, and shown in Figure 2 as the clockwise
arrangement of the variables starting from the upper left corner (C). A negative num-
ber, therefore indicates an edge directed from a higher to lower ordered variable —
for example, from Y to /.

To illustrate, consider the edge between C and M, which the SGS algorithm iden-
tified it as C «+— M (we adopt the convention of always writing the lower ordered
variable on the left). Its statistics, 87/75/—100, indicate that it is selected by the
bootstrap procedure in 87% of the realizations, found to have a definite direction in
75% of the realizations in which it is selected, and is 100 percentage points more
frequently oriented C «— M than C — M.

Overall, the bootstrap provides support for the orientation of the edges, as well
as for the skeleton. Both the Directed and Net Direction statistics correspond to the
orientation of the identified edges. Two edges require further comment. First, the edge
between / and Y is directed in the bootstrap only 40% of the times that it is selected,
although when it is directed it is oriented as in the identified graph (/ < Y) by 95
points more than the reverse. While this orientation would appear to be only weakly
supported, notice that reversing the orientation, holding all other edges fixed, would
violate the maintained hypothesis that the graph is acyclical by introducing a loop:
I—-Y—->C—I.

Secondly, the search algorithm directs the edge between C and / in 67% of the
cases in which it is selected, but with only a 19 point advantage for the selected
direction (C — I) over the reverse. This is confirmed in Table 1 which shows a fairly
even division between the edge being undirected and it taking each of the unidirec-
tional orientations. However, given the high level of confidence in the orientation
of C Y and C +— M edges, directing the edge as C </ would not be attractive.
It would imply that C was an unshielded collider that had not been identified. C
is found to be an unshielded collider in only 20% of the realizations. Thus, despite
the two edges whose directions are individually more weakly identified, the boot-
strap procedure, viewed as a whole, provides moderately strong support for the graph
identified in Figure 2.°

9As we pointed out in section I, we regard the bootstrap evidence as heuristic and interpret it as such here.
But it is also possible that when the existence or direction of edges is less than clear cut, as in the two instances
just discussed, the matter could be resolved by a series of tests of over-identifying restrictions in the spirit of
encompassing (Hendry, 1995, ch. 14) and general-to-specific specification search (Hoover and Perez, 1999,

Krolzig and Hendry, 2001) or, as one referee suggests, through the application of Bayesian model averaging
(e.g. Raftery, 1996). These suggestions are beyond the scope of the present paper.
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Figure 3 demonstrates why it matters which order is selected. In the four-variable
system, there are 16 impulse—response functions. We display three that illustrate the
range of variation. Each panel displays one of these impulse—response functions for
each of the three identification schemes:

1. A Choleski ordering M, C, I, Y, corresponding to

! 0 0 0

laew 1 0 0]
AO_ (2513 die 1 0 i
Layy ayc ay 1

2. Swanson and Granger’s (1997) causal chain M — C — [ — Y, corresponding to

M1 0 0 O
acy 1 0 0

A= e 1 o)
L 0 0 Ay 1
3. The order selected by the SGS algorithm (Figure 2), corresponding to
1 0O 0 O
_ | Qem 1 0 acy
Ao= 0 ac 1 ay
0 0 0 1

In each panel, the impulse-response functions for the Choleski ordering and Swan-
son and Granger’s causal chain are similar, while those for the SGS-selected order
are quite distinct. In panel A, the impulse—response function of M for a shock to C for
the SGS-selected order is positive at all horizons and globally increasing, while those
for the other two orders are negative. While the impulse-responses in the other two
panels do not display such a qualitative contrast, they are nonetheless quanti-
tatively distinct. All the three impulse—responses of Y to M in panel B show a similar
pattern, but the impulse-response corresponding to the order chosen by the SGS
algorithm lies well below the other two, especially for the first half of the forecast
period. The quantitative gap is even larger and shows less tendency to converge over
time with the impulse-responses of Y to a shock to Y. And where the impulse—
responses for both Swanson and Granger’s and the Choleski order start positive and
then turn negative; the impulse—response for the order chosen by the SGS algorithm
never becomes negative at all.

The close similarity of impulse—response functions for the Choleski order and
Swanson and Granger’s causal chain is not too surprising as the causal chain (in
contrast to the SGS-selected order) is an overidentifying restriction on that particular
Choleski order. The SGS-selected order is, however, an overidentifying restriction of
two other Choleski orders: M, Y, C, I and Y, M, C, I. The impulse-response func-
tions for these two Choleski orders are in fact very close to those for the SGS-selected
order. This similarity points to the usefulness of causal search algorithms in choosing
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among just-identified causal orders that could not be distinguished on, for example,
a likelihood criterion alone.

IV. How well does the bootstrap indicate the uncertainty
of causal search?

Now that we have seen how to apply the bootstrap procedure, we need to ask whether
its guidance is reliable. We know from Monte Carlo simulations that the performance
of'the causal search algorithm depends on the signal-to-noise ratios of the causal link-
ages in the true data-generating process. Monte Carlo simulations are based on the
specification of an artificial ‘true’ data-generating process. In practice, of course, we
do not know the true data-generating process. Our assessment of reliability is guided
by the following idea: the bootstrap procedure is reliable if it gives us guidance that
would mimic that of a Monte Carlo simulation, if we somehow had access to the
truth.

We begin our assessment of the bootstrap procedure with a known SVAR. We
evaluate the performance of SGS search algorithm in a Monte Carlo simulation.
This simulation then becomes the standard against which we judge the success of
the bootstrap procedure. As the bootstrap is a solution to an essentially statistical
problem, we evaluate its success with respect to the four statistical steps of the SGS
algorithm — namely, how well it identifies the skeleton and unshielded colliders of the
graph of the true SVAR. The bootstrap procedure would work ideally if it reproduced
the results of the Monte Carlo simulation.

Appendix C reports the details of the design of the simulation experiments. Here,
we provide only a sketch.

(1) We start with two graphs and the A, matrix of their associated SVARs. Model
1 (Figure 4) represents three unshielded colliders: y4 on three different paths —

Edge 1 Edge 2
N > V4 Y2
Edge 3
Y3
1 0 0 O
0 1 0 O
A=
0 0 1 0
Ogo Quyy Oyzp 1

Figure 4. Model 1
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v Edge 1 >
Edge 2 Edge 3 Edge 5
Y4 Ys
A
Edge 4
Y6 > V3
Edge 6
! 0 0 0 0 0
Ay 1 0 0 a5 O
A, - 0 0 0 0 ay
Qg0 Qg0 Aazo 1 0 0
0 0 0 0 1 0
| 0 0 0 0 0 1|

Figure 5. Model 2

ViVaYa, V1Vays and y,y4y3. Model 2 (Figure 5) is an elaboration of model 1: the
edge added between y; and y, acts as a shield, so that y, on path y,y4y, is no
longer an unshielded collider. The additional edge 5 adds another unshielded
collider, while the additional edge 6 does not. Model 2, therefore, also has three
unshielded colliders: y, on paths y,y,y; and y,y,4y5; and y, on y;y,ys. And as
edge 6 can be reversed without changing the skeleton or the unshielded
colliders, the best that the SGS algorithm could do is to find an undirected
edge between y; and ys.

We also consider two further models. Model 3 (not shown) is identical to
model 1 except that it reverses edge 3. This reduces the number of unshielded
colliders to just one: y, on the path y,y,y;. Similarly, model 4 (not shown) is
identical to model 2 except that it reverses edge 4. There are now only two
unshielded colliders: y, on y;y,ys and y; on y4y3y6. The algorithm cannot iden-
tify the direction of edge 2.

(2) The SVARs corresponding to models 14 are used to create simulated sets
of pseudo-real-world data. Each realization constructs a time series of 500
observations based on the assignment of a different set of random values to the
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non-zero off-diagonal coefficients (the a;) of the A, matrix. The coefficients
are drawn uniformly from an interval that ensures that the ex ante t-statistics,
which provide a measure of the signal-to-noise ratio, are bounded between 0
and about 10.

(3) We then estimate a VAR like equation (2) for each realization of the pseudo-
real-world data, retain the residuals and treat them as filtered variables that
form the input to the SGS search algorithm. The output of the search is then
recorded and compared with the known graph of the model. These comparisons
are reported as the outcomes of the Monte Carlo simulations. These simulations
are standard against which the bootstrap procedure is judged.

(4) We apply the bootstrap procedure, constructing a large number of bootstrap
realizations, for each realization of the pseudo-real-world data and record the
outcomes.

The key statistical decision in the SGS algorithm starts from the null hypoth-
esis that two variables are conditionally independent. Rejection of the null implies, in
steps 1-3, that an edge is not removed from the graph and, in step 4, that an unshielded
collider is identified. An error of commission (falsely including an edge or falsely
identifying an unshielded collider) is, therefore, an example of #ype I error. The rate
of type I error corresponds to the size of the procedure. Analogously, an error of
omission (falsely omitting an edge or failing to identify an unshielded collider) is an
example of type Il error. The complement of the rate of type Il error corresponds to
the power of the procedure.

Figure 6 reports the size and type II error for identification of the skeleton of
model 1 for both the Monte Carlo and the bootstrap procedure. The horizontal axis

90 -
Monte Carlo errors of omission

80 < (type IT)

70 <
60 <
S
Z 50
= Bootstrap errors o
= 40 - of commission Bootstrap errors of omission
g (type IT)
E (type I)
= 30 9

Monte Carlo errors
of commission
201 (type 1)
10 9
0 T T T T T T T Y
t<1 1<t<2 2<t<3 3<t<4 4<t<5 S5<t<6 6<t<7 t>7

Signal-to-noise ratio (ex ante t-statistic)

Figure 6. Monte Carlo vs. bootstrap for the model 1 skeleton
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100 «
90 <
80 4
Bootstrap errors of omission
70 4 (type II)
s
E:/ 609 Monte Carlo errors of omission
D
E 50 - (type II)
5
E 40 4 P
= Bootstrap errors of commission
30 4 (type I)
Monte Carlo errors of commission
20 <
(type D
a NE—
0 v v v v T
t<1 1<t<2 2<t<3 3<t<4 4<t<5 S5<t<6 6<t<7 t>7

Signal-to-noise ratio (ex ante t-statistic)

Figure 7. Monte Carlo vs. bootstrap for the model 1 unshielded colliders

reports the signal-to-noise ratio of the parameterization of the A, matrix measured as
the mean ex ante t-statistic for the edges in Figure 4.

The critical values of the tests of conditional correlation for the Monte Carlo
simulations are set at 10%. Notice that, when signal-to-noise ratios are very low, the
size of the procedure is also approximately 10%; but, when signal-to-noise ratios are
very high, the size of the procedure falls by about half to 6%. This is consistent with
the results of Monte Carlo experiments on the PC algorithm reported by Demiralp
and Hoover (2003). Figure 7 reports results for size and type II error for the unshielded
colliders in model 1. The pattern is similar to that in Figure 6, although at high signal
strengths, type I error falls to nearly zero.

Preliminary experimentation on model 1 showed that using a 10% critical value
for the tests of conditional correlation in the SGS algorithm applied to the bootstrap
resulted in a size of the procedure systematically higher than that for the Monte
Carlo simulations. Experimentation demonstrated that by reducing the critical value
to 2.5% it was possible to match the size of the Monte Carlo procedure extremely well
as shown in Figure 6. The comparative size reported in Figure 6 does not, therefore,
represent an independent test of the quality of the bootstrap procedure. However, the
same adjustment to the critical value is applied to Models 2—4 with no further model-
specific calibration. Table 2 shows that the match between the size of the Monte Carlo
and bootstrap procedures is very close for both the skeletons and the unshielded
colliders (look at the errors of commission, ignoring model 2A, which is discussed
below), providing independent corroboration of the validity of the adjustment and the
success of the bootstrap procedure.
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TABLE 2

How well does the bootstrap mimic the Monte Carlo simulations?

Difference between bootstrap and Monte Carlo simulations
(percentage points)

Signal-to-noise ratios (measured by ex ante t-statistics)
Model Errorsof: 1<l 1<t<2 2<t<3 3<t<4 4<t<5 5<t<6 6<t<7 t>7 Mean

Skeleton

Model1 Commission 0.9 1.4 1.1 1.6 0.9 0.5 0.7 02 09
Model 2 Commission 1.5 1.1 0.9 1.2 1.3 0.9 0.5 02 09
Model 2A Commission 12.4 11.8 11.0 9.7 8.5 7.5 6.7 58 92
Model 3 Commission 1.1 1.1 1.0 1.0 0.6 0.7 0.5 06 038
Model 4 Commission 1.1 1.0 1.0 0.8 0.8 0.6 0.6 03 038

Model 1~ Omission 43 11.8 14.1 13.1 8.8 7.1 6.6 2.7 8.6
Model 2 Omission 43 9.6 13.0 13.9 8.7 6.5 33 22 7.7
Model 2A° Omission 7.6 —1.6 2.0 2.6 0.4 —0.1 0.2 06 —04
Model 3 Omission 73 11.7 14.0 10.1 6.8 6.1 5.0 30 8.0
Model 4  Omission 6.1 109 14.0 10.0 6.7 6.2 43 27 7.6

Unshielded colliders
Model 1  Commission 0.3 1.7 2.6 2.1 1.6 0.9 0.7 03 1.3
Model 2 Commission —0.1 0.2 —0.5 —1.5 —-0.9 —04 1.2 26 0.1

Model 2A Commission —7.6 —1.6 2.0 2.6 0.4 —0.1 0.2 0.6 —04
Model 3 Commission —0.3 —0.5 -0.7 —-04 0.0 0.3 0.5 0.8 0.0
Model 4 Commission —0.2 —0.6 —-0.9 —04 —0.1 0.1 0.7 0.7 —0.1

Model 1 Omission 12 74 14.8 19.8 13.5 13.1 13.5 73 113
Model 2 Omission 1.8 55 11.9 17.6 16.1 12.5 7.9 8.1 10.2
Model 2A° Omission -3.0 08 6.8 10.0 7.5 7.3 9.2 104 6.1
Model 3 Omission 27 9.0 15.2 13.5 10.8 11.8 8.9 81 10.0
Model4  Omission 12 6.7 15.5 14.3 11.0 11.3 9.4 49 93

Turning to errors of omission, Figure 6 shows that the power of the bootstrap
procedure to identify the skeleton of model 1 is uniformly lower (i.e. the rates of type
II error are uniformly higher) than that of the Monte Carlo. Rates of type Il error for
the Monte Carlo and the bootstrap decrease as signal-to-noise ratios increase. The
mean difference between the two curves is 8.6 percentage points.

Figure 7 shows that for model 1, when signal-to-noise ratios are low, both the
Monte Carlo and the bootstrap procedures falsely identify unshielded colliders with a
size of 10% (again approximately the critical value of the conditional correlation tests
in the Monte Carlo), and almost never falsely identify them when signal strengths are
high. The power of the search algorithm to identify unshielded colliders correctly as
indicated by the Monte Carlo is very low when signal strengths are low (type 11 error
97% for t < 1), but high when signal strengths are high (type Il error 15% when ¢ > 7).
The bootstrap procedure also shows this rising pattern, but remains systematically
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less powerful than the Monte Carlo with a mean difference in the type Il error between
the two curves of 11.3 percentage points.

All four models show similar patterns of type I and type Il errors. The main ques-
tion that we want to answer is how well the bootstrap algorithm mimics the results
that we would find in a Monte Carlo study, were we lucky enough to know the true
structure. We have already seen that the bootstrap algorithm with the adjustment
to the critical value mimics type I error closely, but differs on type II error to a non-
trivial degree. Table 2 presents the differences between the bootstrap algorithm and
the Monte Carlo for all four models. The pattern of differences for models 2, 3, and
4 are similar to those for model 1.

To investigate the effect of the critical value adjustment somewhat further, we
also compare the Monte Carlo to the bootstrap algorithm for model 2 with the critical
value in the bootstrap set to 10% (rather than the adjusted 2.5%). The results (shown
in Table 2 as model 2A) nearly reverse the pattern with the adjusted critical value.
Now the bootstrap matches the Monte Carlo on errors of omission for the skeleton
very closely, but differs by 9.2 percentage points (on average over different signal
strengths) on errors of commission. The pattern is much the same with respect to
unshielded colliders. These patterns are reflective of the usual trade-off between size
and power. They show that we can calibrate the bootstrap to either extreme, and
possibly, through an intermediate setting of the critical value in the bootstrap might
choose some more desirable compromise in matching the Monte Carlo properties on
one or other type of error.

We conclude from these simulation experiments that the bootstrap procedure pro-
vides a reasonable method for assessing the reliability of causal structures iden-
tified by the SGS algorithm. With an adjustment to the critical value in the tests
of conditional correlation, size can be controlled with reasonable precision. Power
is systematically lower than Monte Carlo simulations indicate. This implies that
the bootstrap procedure will suggest the omission of a causal linkage or fail to
direct it too frequently — although the mean errors appear moderate. To look at
this result more positively, if the bootstrap confirms a causal linkage, that confir-
mation is unlikely to be spurious: the bootstrap method should lead to few false
positives.

V. The utility of graph-theoretic algorithms

Demiralp and Hoover (2003) showed that the graph-theoretic PC algorithm was
largely successful in finding the skeleton and somewhat successful in directing
the edges of the causal graph corresponding to the contemporaneous causal
order of structural vector autoregressions. These findings held out the promise that
data-based methods might replace the ad hoc and largely unconvincing a priori
arguments that VAR analysts have typically used to choose the causal order
of the SVAR. Unfortunately, while it was possible to show good results for parti-
cular structures, it was not clear how one could assess the reliability of a causal
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ordering chosen by a search algorithm in the typical cases in which, unlike Monte
Carlo experiments, we do not have the true order to hand to serve as a standard of
comparison.

In this paper, we have proposed a bootstrap procedure that allows the investigator
to assess the performance of the SGS algorithm (a close relative of the PC algorithm)
using only information readily to hand — that is, the data themselves. Using data
from Swanson and Granger (1997), we showed that this bootstrap procedure was an
effective tool. And, by comparing the results of the bootstrap procedure to those of
Monte Carlo experiments on known models, we were able to show that the bootstrap
sufficiently well mimics the Monte Carlo that it can provide useful guidance on the
reliability of inference using graph-theoretic algorithms to determine the causal order
of SVARs.

Final Manuscript Received: October 2007
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Appendix A: The data'

All the raw series, except M1, are from the US National Income and Product Accounts
and were downloaded from the Haver Analytics United States Economic Statistics
database. Except where noted, they are seasonally adjusted, stated in billions of con-
stant 1996 dollars, and cover 1947:1-2002:4. Haver codes are in bold type.

Personal Consumption Expenditure = CH;
Gross Private Domestic Fixed Investment = FH;

19This appendix is drawn with minor corrections from Demiralp and Hoover (2003), Appendix B.
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for 1947:1—-1958:4, M1 monetary
aggregate from Board of Governors (1976),
Table 1.1, pp. 17-18, column 2

M1 monetary aggregate MN = (Money Stock: Total) x 0.97966;

for 1959:1-2002:4. FM1 (data are billions
of current dollars; quarterly values are
averages of monthly values);

Government Consumption Expenditure and Gross Investment (current
dollars) =G;

Government Consumption Expenditure and Gross Investment (constant
dollars) = GH;

Gross National Product (current dollars) = GNP;

Gross National Product (constant dollars) = GNPH;

Civilian Non-institutional Population over 16 Years Old = LNN.

Data used in paper are constructed as follows:

C =log(CH/LNN);

I =log(FH/LNN);

M =1log[MN/(P x LNN)], where P = (GNP — G)/(GNPH — GH);
Y =log[(GNPH — GH)/LNN].

These data are difference stationary on standard tests.

Appendix B: The bootstrap procedure

1 Start with an estimate of the reduced form using the notation of section I with
the addition that a ‘hat’ (") indicates an estimated value:
Y,=BL)Y, ;+U.,. (B.1)

LetU z[ﬁ,], where Uisan N x T matrix with columns U,. (All regression equa-
tions include a constant. Other deterministic components, such as trends, may
be included should the data warrant.)

2 Letk=1,2,...,K be the bootstrap realization,andj = 1,2, ... ,J, where J>> T,
be the pseudo-time period. (In the simulations in this paper, 7 =500, and J =
1,500.) Construct a set of bootstrap pseudo-observations recursively, starting
with the initial condition Yo =0, with

Y =B(L)YL |+ UL, (B.2)

where each UZ.S is a scaling factor,

| T—-L
Tr—-L-V
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times one of the columns of U drawn randomly with replacement, where L is
the order of the lags of the VAR and V=N + 1 (i.e. the number of variables in
each equation of the VAR including the constant). The scaling factor corrects for
losses in degrees of freedom in estimating the residuals from the VAR. Define
the pseudo-data set as Y, =[Yy]= [Y55] to be the last T of the J columns of
recursive pseudo-observations. That is, the observations for t=1,2, ..., T cor-
respond to those for i=J - T+ 1,J -T+2,...,J —1,J. (The long ‘startup
period’ is meant to eliminate dependence on the initial condition.)

3 For each , run the casual search algorithm on the residuals (Uy) from a reduced
form VAR of Y, and record the graph. (In this paper, we use the SGS algorithm,
although the PC algorithm or other algorithms could be used.)

4 For each possible edge between variables (elements of Y) record the number
of times it appears: (a) missing (no edge); (b) undirected (-); (c) directed from
lower to a higher ordered variable («); (d) directed from a higher to a lower
order variable (—); and (e) bidirectional (+).

Appendix C: Design of the simulation experiments

1 We evaluate four SVAR models with contemporaneous causal orders described in
section I'V. Evaluations are made with respect to the reference graph as described
in point 5.

2 We start with a set of artificially generated data constructed by Monte Carlo
methods as follows:

(a) Asetofcontemporaneous parameterizationsisindexedp=1,2, ..., P;and,
for each parameterization a set of Monte Carlo realizations is indexed m =
1,2,. , so that there are PM total realizations. (For all models, P is set
to 200, and, formodels 1 and 3, M is set to 200, yielding 40,000 realizations;
while, for models 2 and 4, M is set to 100, yielding 20,000 realizations.

(b) The data for each Monte Carlo realization are generated recursively. For

each realization, letj=1,2, ...,/, indicate time, start with the initial con-
dition Y}'“ =0, and construct subsequent observations according to
MC _ MC
Ypm] AmeAYpm(/ 1) + AmeEl’m/ . (B 3)
where

(i) Each model includes one lag of each variable, and A is a fixed N x N
matrix of coefficients on the lagged variables, for which all diagonal
elements are set to 0.25 and all off-diagonal elements are set to 0.05.
(These values imply that the data are stationary.)

(1) Ao =[apmg]isan N XN (g= ..,N;h=1,2,...,N) matrix of
contemporaneous coefficients Wlth ones on the main diagonal, and
zeroes placed to correspond to the causal orders for each model in
point 1. The non-zero elements of A, are drawn randomly from a
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range that yields ex ante t-statistics between 0 and 10 (averaging over
all edges), with oversampling in the range that produces average ex ante
t-statistics between 0 and 1. (See subpoint (iv) on the evaluation of
ex ante t-statistics.)

(iii) Epmj =[E, ;] 1s an N-element column vector with each element drawn
randomly from an independent normal distributions with mean 0 and
variance 1.

(iv) To determine the ex ante t-statistics: (1) each model is simulated
1,000 times according to subpoint (i) with randomly drawn contempor-
aneous coefficients, estimated, and the coefficient values (f) and the
corresponding ¢-statistics recorded; (2) a regression equation is esti-
mated = ¢+ uf +error is estimated; (3) in the simulation experi-
ments, the ex ante t-statistic for any coefficient is given as f = ¢ + fifs,
where the hats () indicate estimated or predicted values.

Define the pseudo-data set as Y., =[ Y, ]=[Yo],t=1,2,...,500 to be the
last 500 of the J columns of recursive pseudo-observations, where J>>500.
That is, the observations for t=1,2,...,500 correspond to those for i=
J—499, J-498, ...,J-1,J. (As with the bootstrap method in Appendix B,
the long ‘start-up period’ is meant to eliminate dependence on the initial
condition.)

3 For each Monte Carlo realization, run the SGS algorithm on the residuals from

a reduced form VAR of Yp,,, and record: (a) the ex ante t-statistics for each
edge; and (b) whether edges are present or absent and, if present, how they are
oriented. Results are assessed by comparison with the known reference graph,
as described in point 5. The resulting PM realizations in the present study,
correspond to the Monte Carlo simulations reported in Demiralp and Hoover
(2003) for the PC algorithm. The results provide a practical measure of how
well the SGS algorithm does in discovering the true causal order underlying the
data.

4 For each Monte Carlo realization run the bootstrap procedure described in

Appendix B using Y,, as the input; and, for each bootstrap realization (k),
record: (a) the ex ante t-statistics for each edge; (b) whether edges are pres-
ent or absent; (c) if edges are present, how they are oriented; and (d) the un-
shielded colliders. Results are assessed by comparison with the known graph
[see point 1], as described in point 5. (The number of bootstrap realizations
for each Monte Carlo realization is set to K =100, so that, for models 1 and 3,
the total number of bootstrap realizations is 4,000,000 (= PMK =200 x 200 x
100) and, for models 2 and 4, the number is 2,000,000 (= PMK =200 x 100 x
100). The relatively small number of bootstrap realizations per Monte Carlo
realization is needed to keep the computing time manageable.) The results
provide a measure of how closely the bootstrap conforms to the Monte
Carlo in particular cases.
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5 To assess outcomes in points 3 and 4, the graphs identified by the SGS algorithm
applied to simulated data are compared edge by edge with the graphs that are
used to generate the data (see points 1 and 2). Because of Pearl’s observational
equivalence theorem (see section II), an ideally functioning search algorithm
working with infinite data will not be able to orient some edges. Comparisons
are not made with the true graph that generates the data, but to a reference graph
that represents the equivalence class (that is, to the graph that leaves edges unori-
ented if, in the true graph, they can be reversed without changing the number or
location of the unshielded colliders). Results are assessed according to success
at the statistical identification of the skeleton and the unshielded colliders. There
are three possible outcomes: (i) correct: an edge or unshielded collider is iden-
tified as absent when it is absent in the reference graph or identified as present
when it is present in the reference graph; (ii) omitted: an edge or unshielded
collider that is present in the reference graph is identified as absent; and
(iil) committed: an edge or unshielded collider that is absent in the reference
graph is identified as present.

Results are reported as rates taking the number of possible realizations of a par-
ticular outcome as the base. For example, in model 2 (Figure 5), there are six edges
of a total of 15 possible between six variables. The base for computing the rate of
omissions is, therefore, six per search. By contrast, the base for the rate of commis-
sions is nine — that is, the number of possible edges that are in fact missing in the
reference graph.
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