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Abstract

We describe a computationally intensive methodology for the estimation and analysis of

partially observable nonlinear systems. An example from epidemiology is the SEIR model,

which is a system of di�erential equations with random coe�cients that describes a popula-

tion in terms of four state variables: those susceptible to a disease, those exposed to it, those

infected by it, and those recovered from it. Only those infected by the disease are known to

public health o�cials. An example from �nance is the continuous-time stochastic volatility

model, which is a system of stochastic di�erential equations that describes a security's price

and instantaneous variance. Only the security's price can be observed directly.

System parameters are estimated by a variant of simulated method of moments known

as e�cient method of moments (EMM). The idea is to the match moments implied by the

system to moments implied by the transition density for observables.

System analysis is accomplished by reprojection. Reprojection is carried out by pro-

jecting a long simulation from the estimated system onto an appropriate representation of

a relationship of interest. A general purpose representation is a Hermite expansion of the

conditional density of state variables given observables. A reprojection density thus obtained

embodies all constraints implied by the nonlinear system and is analytically convenient. As

an instance, nonlinear �ltering can be accomplished by computing the conditional mean of

the reprojection density and evaluating it at observed values from the data.

Ideas are illustrated by using the methodology to assess the dynamics of a stochastic

volatility model for daily Microsoft closing prices.

Keywords and Phrases: E�cient Method of Moments (EMM), Simulated Method of Mo-

ments (SMM), Minimum chi-squared, Estimation of stochastic di�erential equations, Esti-

mation of di�usions, Partially observed, Latent variables, Seminonparametric (SNP), Dy-

namic models, Finance, Economics, Epidemiology, Pharmacokinetics, Hermite, Stochastic

volatility.
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1 Introduction

Dynamic nonlinear models that have unobserved variables pervade science. Most often they

arise from dynamic systems described by a system of deterministic or stochastic di�erential

equations in which the state vector is partially observed. For example, in epidemiology the

SEIR model determines those susceptible, exposed, infected, and recovered from a disease

whereas usually data are from case reports that report only those infected (Olsen and Schaf-

fer, 1990). Other examples are continuous and discrete time stochastic volatility models

of speculative markets from �nance (Ghysels, Harvey, and Renault, 1995), general equilib-

rium models from economics (Gennotte and Marsh, 1993); and compartment models from

pharmacokinetics (Mallet, Mentr�e, Steimer, and Lokiec, 1988).

Standard statistical methods, both classical and Bayesian, are usually not applicable in

these situations either because it is not practicable to obtain the likelihood for the entire state

vector or because the integration required to eliminate unobservables from the likelihood is

infeasible. On a case-by-case basis, statistical methods are often available. However, our

purpose here is to describe methods that are generally applicable.

Although determining the likelihood of a nonlinear dynamic system that has unobserved

variables is often infeasible, simulating the evolution of the state vector is often quite prac-

ticable. Our methods rely on this. We describe simulated method of moments methods in

general and then focus the discussion on e�cient method of moments (EMM).

Brie
y, the steps involved in EMM are as follow: Summarize the data by using quasi

maximum likelihood to project the observed data onto a a transition density that is a close

approximation to the true data generating process. This transition density is called the

auxiliary model and its score is called the score generator for EMM. A Hermite series rep-

resentation of the transition density of the observable process is suggested as a convenient

general purpose auxiliary model in this connection. Once a score generator is in hand, given

a parameter setting for the system, one may use simulation to evaluate the expected value

of the score under the stationary density of the system and compute a chi-squared criterion

function. A nonlinear optimizer is used to �nd the parameter setting that minimizes the

criterion.
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If the auxiliary model encompasses the true data generating process, then quasi maximum

likelihood estimates become su�cient statistics and EMM is fully e�cient (Gallant and

Tauchen, 1996). If the auxiliary model is a close approximation to the data generating

process, then one can expect the e�ciency of EMM to be close to that of maximum likelihood

(Gallant and Long, 1997; Tauchen, 1997).

Because EMM is a minimum chi-squared estimator, diagnostic tests are available to

assess system adequacy as well as are graphics that suggest reasons for failure. Subsequent

reprojection of the estimated dynamic system provides a facility for model elucidation that

is as convenient as if a likelihood were available. We employ the methodology for estimation

and diagnostic assessment of models of stock prices that are partially observed systems of

stochastic di�erential equations.

Due to the fundamental importance of di�usion models for stock price dynamics, there

has been signi�cant progress recently using alternative simulation strategies; see Brandt

and Santa-Clara (1999), Durham and Gallant (2002), Elerian, Chib and Shephard (2001),

and the references therein. Despite this recent progress, the alternatives to the simulation

methods discussed here not as general purpose and are limited in their ability to deal with

latent variables.

EMM has found several recent applications, and we list a few, mainly from �nance.

Andersen and Lund (1997), Dai and Singleton (2001), Ahn, Dittmar, and Gallant (2001) use

the method for interest rate applications. Liu (2000), Andersen, Benzoni, and Lund (2001),

Chernov, Gallant, Ghysels, and Tauchen (2001) use it to estimate stochastic volatility models

for stock prices with such complications as long memory and jumps. Chung and Tauchen

(2001) use it to estimate and test target zone models of exchange rates. Jiang and van der

Sluis (2000) use it to price options. Valderamma (2001) employs it for a macroeconomic

analysis and Nagypal (2001) employs it in a labor economics application.

Software for EMM is available from several sources. Our version in Fortran is in the

public domain and available at ftp.econ.duke.edu in directory pub/get/emm. A version for

OX is described in the article by van der Sluis (1997). Je�erey Wang, Insightful Corp., is

directing an NSF project for the inclusion of EMM in S-PLUS and Donald Erdman, SAS

Institute Inc., is directing a project for inclusion in SAS.
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2 Continuous Time Stochastic Volatility Models

The data used to illustrate ideas are observations on the daily price of a share of Microsoft

(MSFT), adjusted for stock splits, fromMarch 13, 1986, through November 16, 2000, yielding

3,712 raw observations. Figure 1 is a plot of the data. The top panel shows the raw price

series, Pt; while the lower panel shows the return series, yt = 100 � [log(Pt)� log(Pt�1)]. The

series fytg is the daily (geometric) return on Microsoft expressed as percentage. Table 1

shows basic statistics on the returns series, both daily and annualized, with 252 used as the

annualization factor.

||||||||||||{

Figure 1 about here

||||||||||||{

||||||||||||{

Table 1 about here

||||||||||||{

The �nance literature normally treats stock prices as a di�usion, usually expressed as

a system of stochastic di�erential equations. The data shown in Figure 1 would thus be

regarded as having resulted from discretely sampling a di�usion.

An example is

dU1t = �10dt+ exp(�10 + �12U2t + �13U3t) dW1t0 � t <1 (1)

dU2t = (�20 + �22U2t)dt+ �20dW2t;

dU3t = (�30 + �33U3t)dt+ �30dW3t;

where U1t is observable at integer t and represents the continuous-time log(Pt) process.

The second and third components are not observable and represent factors that a�ect the

volatility of the process. Versions of this model in which there is only one volatility factor,

i.e., U3t is absent,

dU1t = �10dt+ exp(�10 + �12U2t)dW1t0 � t <1 (2)

dU2t = (�20 + �22U2t)dt+ �20dW2t;
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have a long history in �nancial economics. More recently, however, �nance economists have

utilized models with two volatility factors. (See Chernov, Gallant, Ghysels, and Tauchen

(2001) for references and an application to the Dow Jones Index.) The need for two volatility

factors will become apparent in the empirical example below.

In matrix notation, the system (1) is

dUt = A(Ut) dt +B(Ut) dWt 0 � t <1 (3)

where

Ut =

0
BBBBB@
U1t

U2t

U3t

1
CCCCCA; A(U) =

0
BBBBB@

�10

�20 + �22U2

�30 + �33U3

1
CCCCCA;

Wt =

0
BBBBB@
W1t

W2t

W3t

1
CCCCCA; B(U) =

0
BBBBB@
exp(�10 + �12U2 + �13U3) 0 0

0 �20 0

0 0 �30

1
CCCCCA:

The process is discretely sampled so that the data available for analysis are

yt = 100 � (U1;t � U1;t�1) t = 1; 2; ::: (4)

which corresponds directly to the returns series plotted in the lower panel of Figure 1.

Clearly, not all parameters of the system (1) are separately identi�ed. We impose the

restrictions

�20 = 0; �20 = 1; �30 = 0; �30 = 1 (5)

to achieve identi�cation. These restrictions provide 
exibility and numerical stability in the

estimation work. The free parameters of the system are thus

� = (�10; �22; �33; �10; �12; �13) (6)

As is well known since Lo (1988), the likelihood of the observed process yt given � under

the system dynamics

dUt = A(Ut) dt+B(Ut) dWt (7)
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is not readily available in closed form. This aspect of the problem motivates method of

moments estimation, and, in particular, simulated method of moments as in Ingram and

Lee (1991) and Du�e and Singleton (1993), and the essentially equivalent indirect inference

method proposed by Gourieroux, Monfort and Renault (1993) and Smith (1993).

The system dynamics (7) suggest that, given a value for U0; one could simulate an

increment U� � U0 from the process fUt : 0 � t <1g for a small time value � as follows:

generate three independent normal (0;�2) variates x1; x2 and x3; simulate the Brownian

motion increment W� �W0 by putting

W� �W0 =

0
BBBBB@
x1

x2

x3

1
CCCCCA;

and simulate the increment U� � U0 by putting

U� � U0 = A(U0)� +B(U0)
�
W� �W0

�
:

To simulate a value for Ut; sum over the increments:

Ut � U0 =
t=�X
i=1

�
Ui� � U(i�1)�

�
(8)

=
t=�X
i=1

A(U(i�1)�)�+
t=�X
i=1

B(U(i�1)�)
�
Wi� �W(i�1)�

�
:

In passing, we note that under regularity conditions (Karatzas and Shreve, 1991), as �

decreases the random variable
Pt=�

i=1 B(U(i�1)�)(Wi��W(i�1)�) converges in mean square to

a random variable that has many properties of an integral and is therefore usually denoted asR t
0B(Us) dWs. Similarly, the Reimann sum

Pt=�
i=1 A(U(i�1)�)� converges to

R t
0A(Us) ds. The

process fUt : 0 � t <1g is interpreted as the solution to the integral equation

Ut � U0 =
Z t

0
A(Us) ds +

Z t

0
B(Us) dWs;

which exists under smoothness and growth conditions on the functions A(U) and B(U)

(Karatzas and Shreve, 1991).

The important feature of this example, and of all the applications that we consider,

is that it can be simulated. That is, given a value for the parameters of the model it is

straightforward to generate a simulation fŷtgNt=1; of arbitrary length N .
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The simulation scheme (8) above is known as an Euler scheme. More sophisticated

simulations schemes are available in Kloeden and Platen (1992). Those used here (euler.f,

strong1.f, and weak2.f) are available by anonymous ftp from host ftp.econ.duke.edu in di-

rectory pub/arg/libf.

If the model (1) is stationary at a given value for �; then a time invariant stationary

density

p(y�L; : : : ; y�1; y0j�) (9)

exists for any stretch (yt�L; : : : ; yt�1; yt) of obsevables. If, in addition, (1) is ergodic at �;

then the expectation of a time invariant (nonlinear) function g(y�L; : : : ; y�1; y0) with respect

to (9)

E�(g) =
Z
� � �

Z
g(y�L; : : : ; y0)p(y�L; : : : ; y0j�) dy�L � � � dy0;

can be approximated as accurately as desired by averaging over a simulation, viz.

E�(g) := 1

N

NX
t=1

g(ŷt�L; : : : ; ŷt�1; ŷt):

Throughout, we presume that the requisite initial lags for this computation are primed via

draws from the stationary distribution, which is usually accomplished by letting the system

run long enough for transients die out. For examples such as above, we typically use values

of � on the order of 1/7 per week or 1/24 per day, a burn in period of 1,000 to 5,000, and

values of N on the order of 50,000 to 100,000.

The ability to compute E�(g) for given � and arbitrary g(y�L; : : : ; y�1; y0) means that

model parameters can be computed by method of moments or minimum chi-squared, as we

discuss next.

3 Minimum Chi-Squared Estimators

In general, we consider nonlinear systems that have the features of the stochastic volatility

model (1) just described. Speci�cally, (i) for a parameter vector � in a parameter space R;

the random variables determined by the system have a stationary density

p(y�L; : : : ; y�1; y0j�); (10)
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for every stretch (yt�L; : : : yt); and (ii) for � 2 R; the system is easily simulated so that

expectations

E�(g) =
Z
� � �

Z
g(y�L; : : : ; y0)p(y�L; : : : ; y0 j �) dy�L � � � dy0 (11)

can be approximated as accurately as desired by averaging over a long simulation

E�(g) := 1

N

NX
t=1

g(ŷt�L; : : : ; ŷt�1; ŷt): (12)

Henceforth, we shall use fytg to denote the stochastic process determined by the system,

fŷtgNt=1 to denote a simulation from the system, f~ytgnt=1 to denote data presumed to have been

generated by the system, and (y�L; : : : ; y�1; y0) to denote function arguments and dummy

variables of integration. The true value of the parameter vector of the system (10) is denoted

by �o:

A method of moments estimator �̂n of �o is implemented by (i) setting forth a moment

function, such as

~ c(y�L; : : : ; y�1; y0) =

0
BBBBBBBBBBBBBBBBBBBBBBB@

y0 � ~�1

y20 � ~�2
...

yk0 � ~�k

y�1y0 � ~
(1)

y�2y0 � ~
(2)
...

y�Ly0 � ~
(L)

1
CCCCCCCCCCCCCCCCCCCCCCCA

where ~�j =
1
n

Pn
t=1 ~y

j
t ; ~
(h) =

1
n

Pn
t=1+h ~yt~yt�h; (ii) computing the moment equations

mn(�) = E�( c) =
Z
� � �

Z
~ c(y�L; : : : ; y0)p(y�L; : : : ; y0 j �) dy�L � � � dy0;

and (iii) attempting to solve the estimating equations

mn(�) = 0

for the system parameters �. If a solution �̂n can be found, then that solution is the method

of moments estimate of the system parameters. As indicated earlier, the moment equations
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will usually have to be computed by generating a long simulation fŷtgNt=�L from the system

at parameter setting � and then averaging over the simulation,

mn(�)
:
=

1

N

NX
t=1

~ c(ŷt�L; : : : ; ŷt�1; ŷt):

If there are multiple roots of the estimating equations mn(�) = 0; a particular solution can

be selected as the estimate using methods discussed in Heyde and Morton (1998).

In the event that there is no solution to the estimating equations because, for instance,

the dimension of  c is larger than the dimension of � (so that there are more equations than

unknowns), then one must resort to minimum chi-squared estimation (Neyman and Pearson,

1928) as adapted to dynamic models by Hansen (1982). The minimum chi-squared estima-

tor is obtained by using a nonlinear optimizer minimize a quadratic form in the moment

equations. Speci�cally,

�̂n =
�

argmin m0
n(�)

�
~In
��1
mn(�);

the matrix ~In appearing in the quadratic form is an estimate of the variance of
p
nm0

n(�)

and may be computed as (Gallant, 1987)

~In =
dn1=5eX

�=�dn1=5e

w

 
�

dn1=5e

!
~In� (13)

where

w(u) =

8><
>:

1� 6juj2 + 6juj3 if 0 < u < 1

2

2(1� juj)3 if 1

2
� u < 1;

and

~In� =
8><
>:

1

n

Pn
t=1+�

~ c(~yt�L; : : : ; ~yt) ~ 
0
c(~yt�L�� ; : : : ; ~yt��) if � � 0

~In;�� if � < 0

If yt is multivariate, that is,

yt = (y1;t; : : : ; yM;t)
0;

then, instead of the above, the vector  c is comprised of the elements

MY
i=1

(yi;0)
�i � ~��

(yi;0)(yj;�h)� 
ij(h);
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where

� = (�1; : : : ; �M )0; �i � 0; 0 <
MX
i=1

�i � K

~�� =
1

n

nX
t=1

MY
i=1

(~yi;t)
�i


ij(h) =
1

n

nX
t=1+h

~yi;t~yj;t�h; 0 � i � j �M; 0 � h � L:

The use of method of moments together with simulation to estimate the parameters of

dynamic models with unobserved variables has been proposed by Ingram and Lee (1991),

Du�e and Singleton (1993), Gourieroux, Monfort, and Renault (1993), Smith (1993), and

others. The particular methods that we discuss next are due to Gallant and Tauchen (1996).

4 E�ciency Considerations

We have described a minimumchi-squared estimation strategy based on the moment function

~ c that can be used to estimate system parameters �. There are two open questions with

regard to this estimator: what is the best choice of the moment function ~ ; and, how many

moments should be included in ~ ?

We will consider the questions in the simplest case where the random variables de�ned

by the system (10) generate univariate independently and identically distributed random

variables fytg with density p(yj�). The ideas for the general case of a multivariate, non-

Markovian, stationary system are the same, but the algebra is far more complicated (Gallant

and Long, 1997). Nothing essential is lost by considering the simplest case.

Consider three moment functions ~ c;n; ~ p;n; and ~ f;n that correspond to Classical Method

of Moments, Maximum Likelihood, and E�cient Method of Moments, respectively, de�ned

as follows:

~ c;n(y) =

0
BBBBBBBB@

y � 1
n

Pn
i=1 ~yi

y2 � 1

n

Pn
i=1(~yi)

2

...

yK � 1
n

Pn
i=1(~yi)

K

1
CCCCCCCCA
;

~ p;n(y) =
@

@�
log p(yj~�n);
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~ f;n(y) =
@

@�
log f(yj~�n);

where the exponent K that appears in ~ c;n(y) is the degree of the largest moment used in a

method of moments application, the function f(yj�) that appears in ~ f;n(y) is a density that

closely approximates the true data generating process in a sense made precise later, and the

statistics ~�n and ~�n that appear in ~ p;n(y) and ~ f;n(y) are

~�n =
�

argmax
1

n

nX
i=1

log p(~yij�);

~�n =
�

argmax
1

n

nX
i=1

log f(~yij�);

� is of length p� and � of length p� � p�:

Note that each of the moment functions ~ p;n; ~ c;n; and ~ f;n is in the null space of the

expectation operator corresponding to the empirical distribution of the data, denoted as E ~Fn
.

That is, E ~Fn
~ p;n = E ~Fn

~ c;n = E ~Fn
~ f;n = 0. Method of moments is basically an attempt to do

the same for the model p(yj�). That is, method of moments attempts to �nd a � that puts

one of these moment functions, denoted generically as ~ n; in the null space of the expectation

operator E� corresponding to p(yj�).
In addition to computing ~ n; one computes

~In = E ~Fn
( ~ n)( ~ n)

0:

Once ~ n and ~In have been computed, the data have been summarized, and what we refer

to as \the projection step" is �nished.

For estimation, de�ne

mn(�) = E� ~ n:

If the dimensions of � and ~ n(y) are the same, then usually the equations mn(�) = 0

can be solved to obtain an estimator �̂n: For ~ p;n; the solution is the maximum likelihood

estimator (Gauss, 1816; Fisher, 1912). For ~ c;n with K = p�; it is the classical method

of moments estimator (Pearson, 1894). For ~ c;n with K > p�; no solution exists and the

moment functions ~ c;n are those of minimum chi-squared or generalized method of moments

(Neyman and Pearson, 1928; Hansen, 1982) as customarily implemented.
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As just noted, when K > p�; then ~ n cannot be placed in the null space of the operator

E� for any �; because the equations mn(�) = 0 have no solution. In this case, the minimum

chi-squared estimator relies on the fact that, under standard regularity conditions (Gallant

and Tauchen, 1996) and choices of ~ n similar to the above, there is a function  o such that

lim
n!1

~ n(y) =  o(y) a.s.

lim
n!1

~In = E�o( o)( o)0 a.s.

p
nmn(�

o)
L! N

h
0; E�o( o)( o)0

i

where E�o denotes expectation taken with respect to p(yj�o): For the three choices ~ p;n; ~ c;n;

and ~ f;n of  n(y) above, the functions  
o
p;  

o
c ; and  

o
f given by this result are

 o
c (y) =

0
BBBBBBBB@

y � E�o(y)
y2 � E�o(y2)

...

yK � E�o(yK)

1
CCCCCCCCA

 o
p(y) =

@

@�
log p(yj�o)

and

 o
f (y) =

@

@�
log f(yj�o);

where

�o =
�

argmax E�o log f(�j�):

With these results in hand, � may be estimated by minimum chi-squared, viz.,

�̂n =
�

argminm0
n(�) (

~In)�1mn(�)

and
p
n(�̂n � �o)

L! N
h
0; (Co)�1

i
;

where

Co =
h
E�o ( o

p) ( 
o)0
ih
E�o ( o) ( o)0

i�1hE�o ( o) ( o
p)
0
i
:
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Note that for any nonzero a 2 Rp�;

min
b
E�o
h
a0 o

p � ( o)0b
i2
= E�o

�
a0 o

p

�2 � a0Coa � 0: (14)

Expression (14) implies that a0Coa cannot exceed E�o
�
a0 o

p

�2
= a0

h
E�o ( o

p) ( 
o
p)
0
i
a and there-

fore the best achievable asymptotic variance of the estimator �̂n is (Iop)�1 =
h
E�o ( o

p) ( 
o
p)
0
i�1
;

which is the variance of the maximum likelihood estimator of �. It is also apparent

from (14) that if f o
i g1i=1 spans the L2;p probability space L2;p = fg : E�og2 < 1g and

 o = ( o
1; : : : ;  

o
K); then �̂n has good e�ciency relative to the maximum likelihood estimator

for large K. The polynomials span L2;p if p(yj�) has a moment generating function (Gallant,

1980). Therefore, one might expect good asymptotic e�ciency from ~ c;n for large K.

Rather than just spanning L2;p; EMM requires, in addition, that the moment functions

actually be the score vector  f;n(y) of some density f(yj~�n) that closely approximates p(yj�o).
Possible choices of f(yj~�n) are discussed in Gallant and Tauchen (1996). Of them, one

commonly used in applications is the SNP density, which was proposed by Gallant and

Nychka (1987) in a form suited to cross-sectional applications and by Gallant and Tauchen

(1989) in a form suited to time-series applications.

The SNP density is obtained by expanding the square root of an innovation density h(z)

in a Hermite expansion
p
h(z) =

1X
i=0

�iz
ip�(z);

where �(z) denotes the standard normal density function. Because the Hermite functions

are dense in L2 (Lebesque) and
p
h(z) is an L2 function, this expansion must exist. The

truncated density is

hK(z) =
P2
K(z)�(z)R P2
K(u)�(u) du

;

where

PK(z) =
KX
i=0

�iz
i

and the renormalization is necessary so that the density hK(z) integrates to one. The

location-scale transformation y = �z + � completes the de�nition of the SNP density

fK(yj�) = 1

�
hK

�
y � �

�

�
: (15)
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with � = (�; �; �0; : : : ; �K). Gallant and Long (1997) have shown that

 o
f(y) =

@

@�
log fK(yj�o);

with

�o =
�

argmax E�o log fK(�j�)

spans L2;p.

While a spanning argument can be used to show that high e�ciency obtains for large K;

it gives no indication as to what might be the best choice of moment functions with which to

span L2;p. Moreover, if  p is in the span of  o for some �nite K; then full e�ciency obtains

at once (Gallant and Tauchen, 1996). For instance, the score of the normal density is in the

span of both ~ c;n and ~ f;n for K � 2. These considerations seem to rule out any hope of

general results showing that one moment function should be better than another.

With general results unattainable, the best one can do is compare e�ciencies over a

class of densities designed to stress-test an estimator and over some densities thought to

be representative of situations likely to be encountered in practice to see if any conclusions

seem to be indicated. Comparisons using Monte Carlo methods are reported by Andersen,

Chung, and Sorensen (1999), Chumacero (1997), Ng and Michaelides (2000), and van der

Sluis (1999). Overall, their work supports the conjecture that EMM is more e�cient than

CMM in representative applications at typical sample sizes.

Analytical comparisons are possible for the independently and identically distributed case

and are reported in Gallant and Tauchen (1999). Their measure of e�ciency is the volume of

a con�dence region on the parameters of the density p(yj�) computed using the asymptotic

distribution of �̂n. This region has the form f� : (� � �o)0(Co)�1(� � �o) � X 2
d =ng with

volume
2�d=2(X 2

d =n)
d

d�(d=2) det(Co)
;

where X 2
d denotes a critical value of the chi-squared distribution on d degrees of freedom.

As small volumes are to be preferred, and the region f� : (� � �o)0Iop(� � �o) � X 2
d =ng has

the smallest achievable volume,

RE =
det(Co)

det(Iop)
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is a measure of relative e�ciency. Over a large collection of densities thought to represent

typical applications, their computations support the conclusion that EMM dominates CMM.

Moreover, their computations indicate that once fK(�j�o) begins to approximate p(�j�o) ac-
curately, the e�ciency of the EMM estimator begins to increase rapidly. A representative

illustration is provided by Figure 2, which shows the relative e�ciency comparison for a

trimodal density p(yj�) taken from the Marron-Wand test suite (Marron and Wand, 1992).

As seen in Figure 2, once fK(�j�o) has detected the third mode of the trimodal density, EMM

e�ciency increases rapidly.

||||||||||||{

Figure 2 about here

||||||||||||{

The second question to address is how many moments to include in the moment function

 f . As the computations in Gallant and Tauchen (1999) and Figure 2 suggest, the answer

is as many as is required for f to well approximate p: The natural conclusion is that one

should use standard statistical model selection criteria to determine f as we discuss later.

This approach has a distinct advantage over the use of  c in that there seems to be no

objective statistical criterion for determining the number of moments to include in  c.

5 A General Purpose Auxiliary Model

As indicated in Section 4, the best choice of a moment function  to implement simulated

method of moments is the score of a auxiliary model that closely approximates the density

of the data. We have also seen that the SNP density is a useful, general purpose auxiliary

model. In this section, we shall extend the SNP density to a general purpose auxiliary model

suited to dynamic models. Here, yt is multivariate, speci�cally a column vector of lengthM;

and we write xt�1 for the lagged state vector, which typically is comprised of lags yt�j. For

simplicity, we often suppress the time subscript and write y and x for the contemporaneous

value and lagged state vector, respectively. With these conventions, the stationary density

(10) of the dynamic system under consideration can be written p(x; yj�) and its transition

14



density as

p(yjx; �) = p(x; yj�)R
p(x; yj�) dx (16)

If one expands
p
p(x; y j �o) in a Hermite series and derives the transition density of the

truncated expansion, then one obtains a transition density fK(yt jxt�1) that has the form of

a location-scale transform

yt = Rzt + �xt�1;

of an innovation zt (Gallant, Hsieh, and Tauchen, 1991). The density function of this inno-

vation is

hK(zjx) = [P(z; x)]2�(z)R
[P(u; x)]2�(u) du; (17)

where P(z; x) is a polynomial in (z; x) of degree K and �(z) denotes the multivariate normal

density function with dimension M; mean vector zero, and variance-covariance matrix the

identity.

It proves convenient to express the polynomial P(z; x) in a rectangular expansion

P(z; x) =
KzX
�=0

0
@KxX
�=0

a��x
�

1
A z�; (18)

where � and � are multi-indexes of maximal degrees Kz and Kx; respectively, and K =

Kz+Kx. Because [P(z; x)]2=
R
[P(u; x)]2�(u)du is a homogeneous function of the coe�cients

of the polynomial P(z; x); P(z; x) can only be determined to within a scalar multiple. To

achieve a unique representation, the constant term a00 of the polynomial P(z; x) is put to
one. With this normalization, hK(zjx) has the interpretation of a series expansion whose

leading term is the normal density �(z) and whose higher order terms induce departures

from normality.

The location function is linear

�x = b0 +Bxt�1; (19)

where b0 is a vector and B is a matrix.

It proves advantageous in applications to allow the scale R of the location-scale transfor-

mation y = Rz + �x to depend on x because it reduces the degree Kx required to achieve

15



an adequate approximation to the transition density p(yjx; �o). With this, the location-scale

transformation becomes

y = Rxz + �x (20)

where Rx is an upper triangular matrix that depends on x. The two choices of Rx that

have given good results in applications are an ARCH-like moving average speci�cation and

a GARCH-like ARMA speci�cation, which we describe next.

For an ARCH speci�cation, let Rxt�1 be a linear function of the absolute values of the

elements of the vectors yt�Lr � �xt�1�Lr
through yt�1 � �xt�2; viz.

vech(Rxt�1) = �0 +
LrX
i=1

P(i)jyt�1�Lr+i � �xt�2�Lr+i
j

where vech(R) denotes a vector of length M(M +1)=2 containing the elements of the upper

triangle of R; �0 is a vector of lengthM(M +1)=2; P(1) through P(Lr) areM(M +1)=2 byM

matrices, and jy� �j denotes a vector containing the absolute values of y� �. The classical

ARCH (Engle, 1982) has

�xt�1 = Rxt�1R
0
xt�1

depending on a linear function of squared lagged residuals. The SNP version of ARCH is

more akin to the suggestions of Nelson (1991) and Davidian and Carroll (1987).

Since the absolute value function is not di�erentiable, juj is approximated in the formula

for Rx above by the twice continuously di�erentiable function

a(u) =

8><
>:

(j100uj � �=2 + 1) =100 j100uj � �=2

(1� cos(100u)) =100 j100uj < �=2

The scale factor 100 above represents a compromise. Small values, such as 3, improve the

stability of the computations but then a(�) does not approximate j � j well.
For a GARCH speci�cation, let

vech(Rxt�1) = �0 +
LrX
i=1

P(i)jyt�1�Lr+i � �xt�2�Lr+i
j+

LgX
i=1

diag(G(i))Rxt�2�Lg+i
(21)

where G(1) through G(Lg) are vectors of length M(M + 1)=2.

The classical GARCH (Bollerslev, 1986) has �xt�1 expressed in terms of squared lagged

residuals and lagged values of �xt�1. As with the SNP variant of ARCH, the SNP version
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of GARCH is expressed in terms of the absolute value of lagged residuals and standard

deviations.

Note that when Lg > 0; the SNP model is not Markovian and that one must know

both xt�1 and Rxt�2�Lg
through Rxt�2 to move forward to the value for yt. Thus, xt�1 and

Rxt�2�Lg
through Rxt�2 represent the state of the system at time t� 1 and must be retained

in order to evaluate the SNP conditional density of yt or to iterate the SNP model forward

by simulation. If one wants to compute the derivatives of the SNP density with respect to

model parameters, one must retain the derivatives of Rxt�2�Lg
through Rxt�2 with respect to

model parameters as well.

The change of variable formula applied to the location-scale transform (20) and innovation

density (17) yields the SNP density

fK(y jx; �) = hK[R
�1
x (y � �x) jx ]
det(Rx)

: (22)

Hereafter, we shall distinguish among the lag lengths appearing in the various components

of the expansion. The number of lags in �x is denoted Lu; the number of lags in Rx is

Lu + Lr; and the number of lags in the x part of the polynomial, P(z; x); is Lp: We set

L = max(Lu; Lu + Lr; Lp):

Large values of M can generate a large number of interactions (cross product terms) for

even modest settings of degree Kz; similarly, for M � Lp and Kx. Accordingly, we introduce

two additional tuning parameters, Iz and Ix; to represent �ltering out of these high order

interactions. Iz = 0 means no interactions are suppressed, Iz = 1 means the highest order

interactions are suppressed, namely those of degree Kz . In general, a positive Iz means all

interactions of order larger than Kz � Iz are suppressed; similarly for Kx � Ix.

In summary, Lu; Lg; and Lr determine the location-scale transformation y = Rxzt + �x

and hence determine the nature of the leading term of the expansion. The number of lags

in the location function �x is Lu and the number of lags in the scale function Rx is Lu +Lr.

The number of lags that go into the x part of the polynomial P(z; x) is Lp. The parameters

Kz; Kx; Iz and Ix determine the degree of P(z; x) and hence the nature of the innovation

process fztg.

||||||||||||{
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Table 2 about here

||||||||||||{

Putting certain of the tuning parameters to zero implies sharp restrictions on the process

fytg; the more interesting of which are displayed in Table 2.

6 The Projection Step

As suggested in Section 4 and veri�ed by Gallant and Tauchen (1996) and Gallant and Long

(1997), the best choice of a moment function to implement simulated method of moments for

dynamic systems such as (3) and (4) is the score of a auxiliary model f(yjx; �) that closely
approximates the transition density implied by the system (16), where the parameter vector

� of the auxiliary model is evaluated at its quasi maximum likelihood estimate ~�n. That is,

the best choice has the form

~ f (x; y) =
@

@�
log f(yjx; ~�n); (23)

where

~�n =
�

argmin sn(�) (24)

sn(�) = �1

n

nX
t=1

log f(~ytj~xt�1; �):

A considerable advantage to closely approximating the transition density of the system is

that the computational formula (13) for the weighting matrix ~In given in Section 3 for the

chi-squared estimator simpli�es to

~In = 1

n

nX
t=1

~ f(~xt�1; ~yt) ~ 
0
f(~xt�1; ~yt) (25)

because the covariance terms ~In� ; � > 0; of (13) can be neglected when the auxiliary model

closely approximates the transition density of the system in a sense made precise by Gallant

and Long (1997).

In Section 5, we have suggested that the SNP density fK(yjx; �) is a useful general

purpose choice of auxiliary model in dynamic applications. The tuning parameters of the

SNP density

(Lu; Lg; Lr; Lp;Kz ; Iz;Kx; Iz)
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may determined by a statistical model selection criterion. One that works reasonably well

is the Schwarz BIC criterion (Coppejans and Gallant, 2000). The Schwarz BIC criterion

(Schwarz, 1978) is computed as

BIC = sn(�̂) + (1=2)(p�=n) log(n)

with small values of the criterion preferred. The criterion rewards good �ts as represented

by small sn(�̂) but uses the term (1=2)(p�=n) log(n) to penalize good �ts gotten by means

of excessively rich parameterizations. Our suggestion is to use the Schwarz BIC criterion to

move along an upward expansion path until an adequate model is determined.

We shall illustrate with the data from the lower panel of Figure 1, which are 3,711

observations on the daily return on Microsoft. For these data, the preferred �t has

(Lu; Lg; Lr; Lp;Kz; Iz;Kx; Iz) = (1; 1; 1; 1; 6; 0; 0; 0) (26)

for which the dimension of �; and hence the dimension of ~ f ; is 11. The speci�cation search

follows the now established SNP protocol: The initial model is

(Lu; Lg; Lr; Lp;Kz; Iz;Kx; Iz) = (1; 1; 1; 1; 0; 0; 0; 0)

which is a Gaussian GARCH model de�ned in Table 3. From this point, Kz is expanded

from 0 in increments of 2, up to a maximum of 8, until the BIC criterion indicates no

further expansion is warranted. The increment of 2 is used because extensive experience

suggest that, for �nancial data, even powers tend to dominate since these powers control

tail-thickness, the pervasive feature of �nancial data. For the Microsoft data, the expansion

stops at Kz = 6. Next, Lg and Lr are separately incremented, and for the Microsoft data, no

further expansion in those directions proved warranted. Finally, Kx is incremented to unity,

which permits state dependence of polynomial coe�cients. Again, for the Microsoft series,

the BIC (and inspection of t-statistics on the Hermite coe�cients) suggests no expansion

beyond (26) is warranted.

7 The Estimation Step

The objectives are (i) to estimate �; (ii) test the hypothesis that the dynamic system under

consideration generated the observed data f~ytgnt=1; and (iii) provide diagnostics that indicate
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how a rejected system should be modi�ed to better describe the distribution of the observable

process fytg.
We presume that the data have been summarized in the projection step, as described in

Section 6, and that a moment function of the form

~ f(x; y) =
@

@�
log f(y jx; ~�n);

and a weighting matrix

~In = 1

n

nX
t=1

h @
@�

log f(~yt j ~xt�1; ~�n)
ih @
@�

log f(~yt j ~xt�1; ~�n)
i0

are available from the projection step. Here we have assumed that f(y jx; ~�n) closely ap-

proximates p(y jx; �o). If not, the weighting matrix given by (13) must be used. If the SNP

density fK(y jx; �) is used as the auxiliary model with tuning parameters selected by BIC, ~In
as computed above will be adequate (Gallant and Long, 1997; Gallant and Tauchen, 1999;

and Coppejans and Gallant, 2000).

Here, we shall indicate explicitly that the dependence on n of the moment equations

mn(�) enters through the quasi maximum likelihood estimate ~�n by writing m(�; ~�n) for

mn(�) where

m(�; �) = E� @

@�
log f(y jx; �):

Recall that the moment equations of the minimum chi-squared procedure discussed in Sec-

tion 3 are computed by averaging over a long simulation

m(�; ~�n)
:
=

1

N

NX
t=1

@

@�
log f(ŷt j x̂t�1; ~�n):

The EMM estimator is

�̂n =
�2R

argminm
0

(�; ~�n)(~In)�1m(�; ~�n)

The asymptotics of the estimator are as follows. If �o denotes the true value of � and �o is

an isolated solution of the moment equations m(�o; �) = 0; then under regularity conditions

(Gallant and Tauchen, 1996; Gallant and Long, 1997),

lim
n!1

�̂n = �o a.s.

p
n(�̂n � �o)

L! N
n
0; [(Mo)0(Io)�1(Mo)]�1

o
(27)
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lim
n!1

M̂n =Mo a.s.

lim
n!1

~In = Io a.s.

where M̂n =M(�̂n; ~�n); M
o =M(�o; �o); M(�; �) = (@=@�0)m(�; �); and

Io = E�o
h @
@�

log f(y0 jx�1; �o)
ih @
@�

log f(y0 jx�1; �o)
i0
:

Under the null hypothesis that p(y�L; : : : ; y0 j �) is the correct model,

L0 = nm0(�̂n; ~�n) (~In)�1m(�̂n; ~�n) (28)

is asymptotically chi-squared on p� � p� degrees of freedom. Under the null hypothesis that

h(�o) = 0; where h maps R into <q;

Lh = n
h
m0( ^̂�n; ~�n)(~In)�1m( ^̂�n; ~�n)�m0(�̂n; ~�n)(~In)�1m(�̂n; ~�n)

i
(29)

is asymptotically chi-squared on q degrees of freedom where

^̂�n =
h(�)=0

argminm0(�; ~�n) (~In)�1m(�; ~�n):

AWald con�dence interval on an element �i of � can by constructed in the usual way from

an asymptotic standard error
p
�̂ii. A standard error may be obtained by computing the

JacobianMn(�; �) numerically and taking the estimated asymptotic variance �̂ii to be the ith

diagonal element of �̂ = (1=n)[(M̂n)
0(~In)�1(M̂n)]

�1. These intervals, which are symmetric,

are somewhat misleading because they do not re
ect the rapid increase in the EMM objective

function sn(�) = m0(�; ~�n)(~In)�1m(�; ~�n) when �i approaches a value for which the system

under consideration is explosive. Con�dence intervals obtained by inverting the criterion

di�erence test Lh do re
ect this phenomenon and are therefore more useful. To invert the

test one puts in the interval those ��i for which Lh for the hypothesis �
o
i = ��i is less than the

critical point of a chi-squared on one degree of freedom. To avoid re-optimization one may

use the approximation

^̂�n = �̂n +
��i � �̂in

�̂ii
�̂(i)

in the formula for Lh where �̂(i) is the i-th column of �̂:

The above remarks should only be taken to imply that con�dence intervals obtained

by inverting the criterion di�erence test have more desirable structural characteristics than
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those obtained by inverting the Wald test and not that they have more accurate coverage

probabilities.

When L0 exceeds the chi-squared critical point, diagnostics that suggest improvements

to the system are desirable. Because

p
nm(�̂n; ~�n)

L! N
n
0;Io � (Mo)[(Mo)0(Io)�1(Mo)]�1(Mo)0

o
;

inspection of the t-ratios

Tn = S�1n

p
nm(�̂n; ~�n); (30)

where Sn =
�
diagf~In� (M̂n)[(M̂n)

0(~In)�1(M̂n)]
�1(M̂n)

0g
�1=2

; can suggest reasons for failure.

Di�erent elements of the score correspond to di�erent characteristics of the data and large

t-ratios reveal those characteristics that are not well approximated.

8 Application: Stock Price Di�usion

We illustrate EMM estimation by estimating the stochastic di�erential equation (1) using

the Microsoft data series shown in Figure 1. We use the SNP model determined in Section 5

as the auxiliary model. This auxiliary model has 11 parameters and therefore determines 11

moment conditions.

A special case of (1), with only one stochastic volatility factor, is

dU1t = �10dt+ exp(�10 + �12U2t) dW1t 0 � t <1 (31)

dU2t = �22U2tdt + dW2t

where normalizations have been imposed for identi�cation. We term (31) the SV1 model.

The most general case is

dU1t = �10dt+ exp(�10 + �12U2t + �13U3t) dW1t (32)

dU2t = �22U2tdt+ dW2t

dU3t = �33U3tdt+ dW3t

We term (32) the SV2 model.

Table 3 shows the EMM objective function values for these two models for various simu-

lation lengths. Evidently, the SV1 model is rejected at the 5 percent level and is borderline
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at the one percent level. The SV2 model is acceptable at the 5 percent level. The inferences

are reasonably robust with respect simulation size, and in what follows all results are report

for N = 100; 000:

Table 4 displays parameter estimates, asymptotic standard errors, and 95 percent cri-

terion di�erence con�dence intervals. For SV1, the point estimates reveal moderate mean

reversion in the single stochastic volatility. For SV2, on the other hand, the estimates of

the stochastic volatility model cleanly separate into two distinct factors: a very persistent

factor, U2t; which displays very little mean reversion, and a very strongly mean-reverting

factor, U3t. Note that a conventional Wald con�dence interval �̂22 � �̂�z for �22 would in-

clude zero, which represents Brownian motion with drift, and extends well into the unstable

region �22 > 0. On the other hand, the criterion-di�erence con�dence is very asymmetric

and lies almost exclusively in the stable region �22 < 0: The asymmetry of the con�dence

interval re
ects the asymmetry of the objective function due to the explosive behavior of

simulations from unstable models (Tauchen, 1998).

Table 5 shows the diagnostic t-ratios for SV1 and SV2. The SV1 model fails to �t the

scores corresponding to the GARCH scale (21) function and the even-numbered parameters

of the Hermite polynomial (18). The reason is that the data, and thereby the score, display

persistent stochastic volatility and strong conditional non-Gaussian thick tails. A single

factor stochastic volatility model cannot simultaneously capture both features of the data.

In contrast, the SV2 model adequately �ts all of the scores, and thus appears to adequately

�t the data.

Figure 3 shows QQ-plots of unconditional quantiles of the data versus those of the SV1

and SV2 models. The model quantiles are determined by simulation. In the top panel, the

SV1 model is seen to fail the capture the tail properties of the data. In the bottom panel,

the SV2 model captures nearly all aspects of the data.

||||||||||||{

Table 3 about here

||||||||||||{

||||||||||||{
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Table 4 about here
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Table 5 about here
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Figure 3 about here
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9 The Reprojection Step

From the observed data set f~ytgn1 we have generated via EMM the parameter estimate �̂ for

each model under consideration. We now proceed backwards to infer the unobserved state

vector from the observed process as implied by a particular model. The approach follows

the reprojection method proposed by Gallant and Tauchen (1998), which is a numerically

intensive, simulation-based, nonlinear Kalman �ltering technique.

The idea is relatively straightforward. As a by-product of the estimation, we have a

long simulated realization of the state vector fÛtgNt=1 and the corresponding observables

fŷtgNt=1 for � = �̂. Working within the simulation, we can calibrate the functional form of

the conditional distribution of functions of Ût given fŷ�gt�=1. Given the calibrated functions

determined within the simulation, we simply evaluate them on the observed data. More

generally, we can determine within the simulation the conditional distribution of functions

of Ût given fŷ�gt�=1 and then evaluate the result on observed data f~ytgnt=1.
We illustrate with the conditional mean functions of the volatility factors of the SV1 and

SV2 models estimated in the previous section. Our targets are

E(Uitjfy�gt�=1); i = 2; 3 (33)

To begin, we generate simulations fÛtgNt=1; fŷtgNt=1; at the estimated ~� and N = 100; 000:

Keep in mind that, in order to generate via �ltering yt predictions of U2t and U3t; we are
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allowed to use very general functions of fy�gt�=1 and that we have a huge data set work

with. After some experimentation, we found the following strategy, which seems to work

quite well. We estimate an SNP-GARCH model on the ŷt because the SNP-GARCH model

provides a convenient representation of the one-step ahead conditional variance �̂2t of ŷt+1

given fŷ�gt�=1. We then run regressions of Ûit on �̂
2
t ; ŷt; and jŷ� j and lags of these series, with

lag lengths generously long. (Keep in mind the huge size of the simulated data set; these

regressions are essentially analytic projections.) At this point we have calibrated, inside the

simulations, functions that give predicted values of U2t and U3t given fy�gt�=1. Lastly, we

evaluate these functions on the observed data series f~y�gt�=1; which gives reprojected values

~U2t and ~U3t for the volatility factors at the data points.

Figure 4 shows plots of the raw returns series and the reprojected volatility factors for

the SV1 and SV2 models determined as just described. As to be expected, for SV2, ~U2t is

slowly moving while ~U3t is quite choppy. Interestingly, the crash of 1987 is attributed to

a large realization of the strongly mean reverting factor, U3. This result suggest that the

volatility increase surround the 87 crash was rather temporary, which appears consistent

with the plot of the raw data in the top panel. Finally, the reprojected volatility factor from

the SV1 model lies between those of the SV2 model and seems to miss much of the crash of

1987, which re
ects further in the shortcomings of single-factor stochastic volatility models.

||||||||||||{

Figure 4 about here
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10 Conclusion

In this paper, e�cient method of moments (EMM) has been described and illustrated. The

main references for the procedure itself are Gallant and Tauchen (1996), Gallant and Long

(1997), Tauchen (1997), and Gallant and Tauchen (1998). E�ciency considerations were

discussed. Main references for this material are Gallant and Tauchen (1996) and Gallant

and Tauchen (1999).
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The procedure consists of three steps: Projection, Estimation, and Reprojection. The

�rst two steps must be carried out. The last step, Reprojection, is optional and may need

to be modi�ed to suit the application.

The Projection step summarizes the data into two statistics: the quasi maximum like-

lihood estimator of the parameters of an auxiliary model estimated from the data and an

estimate of its variance.

The Estimation step provides estimates of the parameters of the model under consider-

ation. Estimation is accomplished by using a minimum chi-squared criterion de�ned by the

expected score of the auxiliary model determined in the projection step. The chi-squared

criterion provides an automatic test of model adequacy. The estimating equations evaluated

at the estimated parameter also provide diagnostics.

The Reprojection step is accomplished by generating a long simulation of observables from

the system and projecting it onto a nonparametric density estimator. The nonparametric

density estimator provides a representation of the transition density of the data subject to the

restrictions implied by the model. The SNP density is well suited to this purpose because

of the ease with which conditional expectations can computed. More generally, because

state variables together with the corresponding observables can be simulated, reprojections

of unobserved state variables onto observables provide �lters for extracting unobserved state

variables from the observed data. This �ltering can be accomplished by projection onto an

nonparametric density estimator as in Gallant, Hsu, and Tauchen (1999) or by projection on

some reasonable representation of the relationship of interest as in the Microsoft example.

We close with remarks about statistical e�ciency and model adequacy. EMM uses the

score function of an auxiliary model that describes the data to de�ne the estimating equation

for minimum chi-squared estimation. This choice is motivated by e�ciency considerations.

However, through a series of applications, we and other users have learned that the main

bene�t of EMM is not so much e�ciency per se, but rather the diagnostic information on

model adequacy that is produced. EMM forces a model to confront a set of comprehensive set

of data-determined moment conditions that are valid by construction. This confrontation

provides considerable insight into the model's adequacy. For example, in the empirical

application in Section 8, the EMM methodology revealed the shortcomings of a single-factor
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stochastic volatility model as a description of the dynamics of the Microsoft stock price

series. These shortcoming might never have been revealed by a direct likelihood-based or

Bayesian approach that treated the single-factor stochastic volatility model as correct.
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Table 1. Sample Statistics: Percent Return on Microsoft,

March 14, 1986 { November 16, 2000

Daily Annualized

Mean: 0.158 39.868
Std Dev: 2.502 39.720
Variance 6.260 1577.641

n: 3711

Min: -35.828 -9028.656

Q01: -6.243 -1573.337
Q05: -3.407 -858.504
Q10: -2.598 -654.583
Q50: 0.000 0.000
Q90: 3.010 758.507
Q95: 3.961 998.150
Q99: 6.255 1576.271

Max: 17.869 4503.033

Table 2. Restrictions Implied by Settings of the Tuning Parameters.

Parameter setting Characterization of fytg

Lu = 0; Lg = 0; Lr = 0; Lp � 0; Kz = 0; Kx = 0 iid Gaussian

Lu > 0; Lg = 0; Lr = 0; Lp � 0; Kz = 0; Kx = 0 Gaussian VAR

Lu > 0; Lg = 0; Lr = 0; Lp � 0; Kz > 0; Kx = 0 semiparametric VAR

Lu � 0; Lg = 0; Lr > 0; Lp � 0; Kz = 0; Kx = 0 Gaussian ARCH

Lu � 0; Lg = 0; Lr > 0; Lp � 0; Kz > 0; Kx = 0 semiparametric ARCH

Lu � 0; Lg > 0; Lr > 0; Lp � 0; Kz = 0; Kx = 0 Gaussian GARCH

Lu � 0; Lg > 0; Lr > 0; Lp � 0; Kz > 0; Kx = 0 semiparametric GARCH

Lu � 0; Lg � 0; Lr � 0; Lp > 0; Kz > 0; Kx > 0 nonlinear nonparametric

Notes: Lu is the lag length of the location function. Lg is the lag length of the GARCH

(autoregressive) part of the scale function. Lr is the lag length of the ARCH (moving

average) part of the scale function. Lp is the lag length of the polynomials in x that

determine the coe�cients of the Hermite expansion of the innovation density. Kz is the

degree of the Hermite expansion of the innovation density. Kx is the degree of polynomials

in x that determine the coe�cients of the Hermite expansion of the innovation density.
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Table 3. Model De�nitions and Minimized Chi-Squared Criterion.

Speci�cation �10 �22 �33 �10 �12 �13 N �2(�̂) df p-value

SV1 * * * * 50k 18.348 7 0.010
SV1 * * * * 75k 17.888 7 0.012
SV1 * * * * 100k 18.189 7 0.124

SV2 * * * * * * 50k 9.978 5 0.076
SV2 * * * * * * 75k 9.254 5 0.099
SV2 * * * * * * 100k 8.642 5 0.124

Notes: * denotes a free parameter. 100k denotes a simulation of length N = 100; 000

simulated simulated at step size � = 1=6048, corresponding to 24 steps per day and 252

trading days per year.

Table 4. Parameter Estimates, Standard Errors, and Criterion-Di�erence

Con�dence Intervals

Speci�cation �10 �22 �33 �10 �12 �13

SV1

Estimate 0.4215 -12.3711 -1.1441 1.4656
Std. Err. 0.0638 2.2803 0.0384 0.0566

95% lower 0.2956 -16.5289 -1.2171 1.3592
95% upper 0.5498 -8.3963 -1.0718 1.5726

SV2

Estimate 0.4247 -0.000861 -102.9206 -0.6759 0.0371 5.0979
Std. Err. 0.0874 0.001633 21.2190 0.1489 0.0027 0.2444

95% lower 0.3517 -0.0015322 -114.6309 -0.7402 0.0346 4.9954
95% upper 0.5060 0.0000190 -94.2487 -0.5868 0.0396 5.2315
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Table 5. Diagnostic t-Statistics.

Coe�cient SV1 SV2

Location Function: b0 psi( 1) 0.424 -1.120
b1 psi( 2) 1.244 1.420

Scale Function:
�0 tau( 1) 2.564 0.503
�gx tau( 2) 1.956 1.024
�gx tau( 3) 2.318 0.722

Hermite Polynomial:
a0;1 A( 2) 0.381 0.563
a0;2 A( 3) 3.390 -1.013
a0;3 A( 4) 0.456 0.660
a0;4 A( 5) 3.570 -0.734
a0;5 A( 6) 0.203 0.639
a0;6 A( 7) 3.099 -0.830
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Figure 1. Microsoft, March 13, 1986 { November 16, 2000. The top panel shows the raw (adjusted

for splits) price series Pt. The bottom panel shows the geometric return 100 � [log(Pt) � log(Pt�1)]

expressed in daily percent form.
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Figure 2. Relative E�ciency for the Trimodal Density. Panel (a) plots the relative e�ciency

of the EMM and CMM estimators against degree K; for the trimodal density of the Marron-Wand

test suite. As seen, the e�ciency of the EMM estimator increases rapidly when the degree K of the

SNP auxiliary model is between 10 and 20. Panel (b) plots the root mean squared error and Kullback-

Leibler divergence of the SNP approximation to the trimodal density against K; labeled mse and KL,

respectively. As seen, the region 10 � K � 20 is the region where the error in the SNP approximation

to the trimodal density decreases rapidly. Panel (c) plots the SNP approximation at K = 10; shown

as a solid line, to the trimodal density, shown as a dotted line. As seen, at K = 10 the SNP density

approximates a trimodal density by a bimodal density. Panel (d) is the same at K = 20. As seen, at

K = 20 the SNP density has correctly determined the number of modes.
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Figure 3. QQ Plots: Top panel is a QQ plot of the quantiles of the data versus those of the SV1 model;

bottom panel is a plot of quantiles of the data versus those of the SV2 model.
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Figure 4. Reprojected (extracted) Volatility Factors, 1986{2000. The top panel is the raw return

series; the second panel is the reprojected volatility factor from the SV1 model; the third and fourth

panels are reprojected volatility factors from the SV2 model.
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