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We develop an equilibrium endowment economy with Epstein–Zin recursive utility and

a Lévy time-change subordinator, which represents a clock that connects business and

calendar time. Our setup provides a tractable equilibrium framework for pricing non-

Gaussian jump-like risks induced by the time-change, with closed-form solutions for

asset prices. Persistence of the time-change shocks leads to predictability of consump-

tion and dividends and time-variation in asset prices and risk premia in calendar time.

In numerical calibrations, we show that the risk compensation for Lévy risks accounts

for about one-third of the overall equity premium.

& 2011 Elsevier B.V. All rights reserved.
1. Introduction

It has long been known that financial prices display special characteristics, such as stochastic volatility, time-varying
risk premium, skewness and excess kurtosis. In this paper, we examine the risk and return properties attributable to these
features from a structural perspective. In particular, we explore a time-variation in a one-dimensional measure of current
economic conditions, akin an NBER business cycle indicator or Chicago Fed National Activity Index. Similar to Stock (1988),
we interpret this state variable as a clock which measures the pace of economic activity. We show that time deformation
and Lévy shocks in the time change give rise to non-Gaussian jump-like risks and time-variation in the asset prices and
risk premium in calendar time.

We consider a discrete-time, real endowment economy similar to the long-run risks specification of Bansal and Yaron
(2004). The preferences of the representative agent are characterized by a recursive utility of Kreps and Porteus (1978) and
Weil (1989), in a parametrization of Epstein and Zin (1989). These preferences allow for a separation between risk aversion
and intertemporal elasticity of substitution of investors, which goes a long way to explain key features of the asset
markets; see Bansal (2007) for a review. We take a rational expectations equilibrium modeling approach and specify the
exogenous dynamics of endowment and dividends in the economy. Specifically, we assume that the log consumption and
dividend on any asset evolve on the two time scales. In business time, they are i.i.d. Gaussian. The calendar time is
connected to a business time scale through a time-change state variable. We model the time-change variable as a Lévy-
based subordinator, that is, a non-decreasing and positive process driven by Lévy shocks.

We first consider a random walk specification for the time change. We show that consumption and dividend growth
rates and markets returns are i.i.d. in calendar time, but their distribution is non-Gaussian due to the Lévy activity shocks
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in the time deformation. However, as the economy is i.i.d., in equilibrium only immediate consumption risks are priced,
and the time-change shocks do not receive a separate risk compensation. Due to a non-Gaussian nature of the economy in
calendar time, the equity risk premium reflects the compensations for higher order moments of consumption and dividend
dynamics. We decompose the total risk compensation in the economy into its Gaussian part and the non-Gaussian Lévy
component. In particular, we express the non-Gaussian component as the sum of the Lévy jump-risk compensations
weighted by the expected number of consumption and dividend jumps. The magnitude of the Lévy jump compensation
increases exponentially in the left tail, so investors require significant risk compensation for an exposure to large negative
consumption jumps.

We then consider a setup when the economic activity variable is a persistent process driven by Lévy shocks. We show
that the distribution of consumption and dividend growth rates is conditionally infinitely divisible, and the time-change
shocks receive separate risk compensation. The mean and volatility of growth rates as well as the risk premia in calendar
time are time-varying and driven by the activity state variable.

The key focus of our paper is the Lévy risk premium. In the calibrations we find that the Lévy risk premium component
due to the time-change shocks account for 40% of the total risk compensation on the consumption asset, and about one-
third of the risk premium on the dividend asset. The relative importance of the non-Gaussian risks is consistent with other
studies; for example, using alternative approaches, Shaliastovich (2010), Broadie et al. (2007) and Pan (2002) also estimate
the risk premium due to non-Gaussian jump-risk to be about one-third of the total equity risk premium. Nevertheless, we
find that we require relatively high risk aversion (around 40) to match the level of the equity premium. In the model,
activity shocks follow tempered stable distribution; the resulting consumption and activity jumps are relatively small and
do not receive substantial risk compensation for moderate levels of a risk-aversion coefficient. A fruitful extension of the
model is to consider different distributional assumptions on the activity shocks which would assign more weight to the
tails of the consumption density. This approach is consistent with structural asset-pricing models developed in the recent
literature which entertain large negative moves and non-Gaussian shocks in the economic inputs, such as Eraker and
Shaliastovich (2008), Drechsler and Yaron (2011), Bekaert and Engstrom (2010), Bates (2008), Barro (2006), Gabaix (2007),
Benzoni et al. (2010), Liu et al. (2005), or beliefs of the agents (Bansal and Shaliastovich, 2010).

Our equilibrium approach based on recursive Epstein–Zin preferences is highly compatible with Lévy-based
representation of infinitely divisible probability distributions. Indeed, Lévy-based characteristic function is log affine, so
using standard log-linearization of returns we obtain a tractable affine asset-pricing model. This enables us to provide
solutions to the asset prices and asset risk premia up to integral operations in general, and closed form in specific cases
when time-change shocks follow tempered stable or gamma distributions. These specifications are economically appealing
as they do not lead to the break-down of choice theory under fat-tail probability distributions highlighted in Geweke
(2001) and Weitzman (2007). In our work, all moments of financial prices exist under a wide range of model parameters.

This paper is related to Martin (2010) and Eraker and Shaliastovich (2008) who analyze the implications of
consumption-based asset-pricing models based on Epstein–Zin utility and non-Gaussian, jump-like fundamental shocks.
While in these works jumps are directly modeled into the consumption dynamics, in our paper, we start with Gaussian
consumption shocks in business time and introduce non-Gaussianity through Lévy time-change shocks. Hansen and
Scheinkman (2009) consider a general valuation framework for non-linear continuous-time Markov environments, and use
it to characterize the risk–return relationship in the long run. Bidarkota and McCulloch (2003) use stable distribution for
consumption errors and derive and analyze the exact solutions for the equilibrium asset prices and risk premia. Bidarkota
and Dupoyet (2007) entertain the thick tails in the consumption growth rate process, modeled as a dampened power law,
which they show can have considerable impact on the equilibrium returns, while Bidarkota et al. (2009) study power-utility
models with incomplete information and a-stable shocks, and explain time-variation in return volatility through non-
Gaussian filtering. Unlike these papers, we emphasize the time-change state variable as an economic source for non-
Gaussian risks and predictability in the economy. The idea of time deformation is quite popular in the reduced-form finance
literature, where the operational time of stock market has been linked to measures of information arrival, such as realized
variation in Andersen et al. (2010), order flow in Ané and Geman (2000) and Geman et al. (2000) and cumulative volume in
Clark (1973). Lévy-models for economic activity are also entertained in Carr and Wu (2004), Barndorff-Nielsen and
Shephard (2006) and Barndorff-Nielsen and Shephard (2001); see also Geman (2008) for a review.

The rest of the paper is organized as follows. In Section 2, we setup preference structure and real economy with a driving
time-change variable. In Section 3, we review technical aspects of infinitely divisible distributions. In Section 4, we explore
pricing implications for the specifications with i.i.d. and persistent time-change shocks. In Section 5, we use calibrations and
provide a numerical analysis of the equity risk premium and compensations for different sources of risks. Conclusion follows.

2. Model setup

2.1. Preferences

We consider a discrete-time real endowment economy. The investor’s preferences over the consumption stream Ct in
calendar time t can be described by the recursive utility function of Epstein and Zin (1989) and Weil (1989):

Ut ¼ fð1�dÞC
ð1�gÞ=y
t þdðEt½U

1�g
tþ1�Þ

1=y
gy=ð1�gÞ, ð1Þ
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where g40 is a measure of a local risk aversion of the agent, c40 is the intertemporal elasticity of substitution and
d 2 ð0,1Þ is the subjective discount factor. For notational convenience, we define

y¼
1�g

1�
1

c

: ð2Þ

When g¼ 1=c (equivalently, y¼ 1) we obtain standard power-utility specification.
Notably, we specify the preferences of the agent over the calendar time consumption, e.g. consumption over a calendar

month or a year. In the paper we specify an evolution of the endowment dynamics in business time, which is different
from calendar time and connected to it through a time-change state variable as described in the next section. In principle,
one could define the preferences of the agent over the business time consumption; however, most of the paychecks come
in on a regular basis (monthly) and many of the economic decisions seem to be made in calendar time, hence, we think it is
more natural to specify the preferences in calendar time.

As shown in Epstein and Zin (1989), the logarithm of the intertemporal marginal rate of substitution for these
preferences is given by

mtþ1 ¼ ylogd�
y
c
Dctþ1þðy�1Þrc,tþ1, ð3Þ

where Dctþ1 ¼ logðCtþ1=CtÞ is the log growth rate of aggregate consumption and rc,tþ1 ¼ logRc,tþ1 is the log return on the
wealth portfolio, that is, the asset which delivers aggregate consumption as its dividends each time period. The
consumption return is not observable in the data. Following the literature, we assume an exogenous process for the
consumption growth and use a standard asset-pricing restriction

Et½expðmtþ1þrtþ1Þ� ¼ 1, ð4Þ

which holds for any continuous return rtþ1 ¼ logðRtþ1Þ, including the one on the wealth portfolio, to solve for an
unobserved wealth-to-consumption ratio in the model. This enables us to express the discount factor in terms of the
underlying state variables and shocks in the economy. We can then use the solution to the discount factor and the Euler
equation (4) to calculate prices of any assets in the economy, such as a risk-free asset and an equity paying a dividend
stream Dt. The logarithm of the real risk-free rate rft ¼ logRft can be determined from

rft ¼�logEte
mtþ 1 : ð5Þ

To obtain analytical solutions the consumption and dividend asset prices, we apply the Campbell and Shiller (1988)
approximation methods to log-linearize the returns:

rtþ1 ¼ k0þk1vtþ1�vtþDdtþ1, ð6Þ

where vt is the log price–dividend ratio, Ddt ¼ logðDtþ1=DtÞ is the log dividend growth rate, and k0 and 0ok1o1 are the
approximating coefficients.
2.2. Real economy

In this paper we explore a representation of the economy driven by a one-dimensional state variable, which
summarizes an intensity of the business activity in the economy. The concept of a univariate state of the economy
capturing the slowing down and heating up of the economic activity during the recessions and expansions is quite
intuitive and economically appealing, and is exemplified by the NBER business cycle indicator, the index of leading
indicators, the consumer confidence index, Chicago Fed National Activity Index and their domestic and international
counterparts. Following Stock (1988), we interpret this state variable as a clock which measures the pace of economic
activity. The idea behind the stochastic clock is that while macroeconomic data are observed at regular calendar intervals,
such as months or years, the real economic activity can take place at its own, potentially different and time-varying pace.
This gives rise to the two time scales for the real economic activity, namely, the calendar time where it is observed, and the
economic time when it takes place. The connection between the two time scales is achieved by a stochastic clock, a
univariate state variable which matches the calendar time to the economic time.

Specifically, we define a stochastic clock variable St to be a non-negative and increasing (a.s.) process, driven by a
stationary component At + 1:

Stþ1 ¼ StþAtþ1: ð7Þ

The stochastic component At captures a change in the pace of economic activity and represents a systematic source of
time-change risk, which affects the dynamics of the economy in the observed calendar time.

Denote ct and dt the log levels of the consumption and dividend processes. In our time-change specification, the
consumption and the dividend evolve on the two time scales, a fictional business time t and the actual calendar time t,
connected by a stochastic clock St. In particular, in business time t, consumption and dividends follow a random walk
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with a drift:

c�t
d�t

" #
¼ mtþS1=2WðtÞ, ð8Þ

where star superscripts denote the log levels of consumption and dividends in business time and bivariate Brownian
motion shock WðtÞ ¼ ½WcðtÞ WdðtÞ�u is independent from the activity shocks At. Parameter m denotes the drift of the
processes:

m¼ ½mc md�u, ð9Þ

and the variance-covariance matrix is given by S :

S¼
s2

c scd

scd s2
d

" #
: ð10Þ

We denote S1=2 its lower triangular Cholesky decomposition, and let tcd ¼ scd=ðscsdÞ stand for the correlation between the
consumption and the dividend growth in business time.

The calendar time t is connected to business time t through the stochastic clock t¼ St . For instance, the observed (log)
consumption level in period t=1, 2,y is equal to the consumption level in business time St:

ct ¼ c�St
: ð11Þ

Hence, we can write down the dynamics of consumption and dividends in actual time in the following way:

ct

dt

" #
¼ mStþS1=2WðStÞ, ð12Þ

so that their rates are given by

gtþ1 �
ctþ1�ct

dtþ1�dt

" #
¼ mDStþ1þS1=2

ðW ½Stþ1��W ½St�Þ ¼ mAtþ1þS1=2
ðW ½Atþ1þSt��W ½St�Þ: ð13Þ

The amount of variation and predictability of the activity state variable has important implications for the consumption
and the dividend dynamics in calendar time. Indeed, when At is a constant equal to one, we obtain that the calendar and
the business time scales completely coincide, so that the growth rates on both scales are i.i.d. Gaussian:

gtþ1 ¼ mþS1=2
ðWðtþ1Þ�WðtÞÞ �Nðm,SÞ: ð14Þ

On the other hand, when business activity At is time-varying, the pace of the economy in calendar time can run faster or
slower than that in business time, so the conditional distributions of the consumption and the dividend streams in
calendar and business times are different. For example, when the activity shocks At +1 are i.i.d., the consumption and
dividend growth rates gt + 1 are i.i.d. as well, though, they no longer follow a Gaussian distribution but a mixture of
Gaussian, induced by a random component in At + 1. Hence, due to the random activity shocks, the observed distribution of
consumption is heavy-tailed, even though the underlying dynamics of the economy in business time is Gaussian. Further,
the predictability of the activity component leads to the time-variation of the conditional mean and variance of the
consumption and dividend streams, so that in calendar time the consumption and dividends are no longer i.i.d. Indeed, the
first two conditional moments of the two streams satisfy

Etgtþ1 ¼ mEtAtþ1,

Vartgtþ1 ¼SEtAtþ1þmmuVartAtþ1: ð15Þ

Then, the time-variation in expected activity EtAt + 1 leads to the time-variation of the conditional means and variances of
the consumption and dividend growth rates in calendar times. The persistence in the expected growth and variance of
consumption is an important feature of the data, as shown in the long-run risks literature (Bansal and Yaron, 2004).

It is worthwhile to note that our stochastic clock model specification imposes a restriction on the joint dynamics of the
conditional mean and volatility of consumption and dividends in calendar time. Indeed, as the expected activity enters
both of the conditional mean and variance of consumption and dividends in (15) with positive loadings, it implies that a
rise in expected future activity increases the expectation and the volatility of the two streams in calendar time. In
particular, when the conditional variance of the activity shocks Vart At + 1 is constant, the two conditional moments become
perfectly positively correlated. To break this one-to-one co-movement of the expected growth and the variance of the two
streams, one approach is to introduce a negative correlation between the conditional mean and variance of the activity
shocks, so that at times of high expected activity the volatility of activity shocks goes down, which would decrease the
conditional volatility of consumption and dividends in calendar times. Another approach is to consider several time-
change variables, along the lines of Huang and Wu (2004), which apply separately to the deterministic drift and the
innovation portions of the consumption and dividend specifications in business time, though, this might be less
straightforward in a general equilibrium context. While breaking a perfect correlation between the conditional mean
Please cite this article as: Shaliastovich, I., Tauchen, G., Pricing of the time-change risks. Journal of Economic Dynamics
and Control (2011), doi:10.1016/j.jedc.2011.01.003
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and variance of consumption would undoubtedly improve the statistical flexibility of the model, for simplicity, in
this paper we focus on a specification with one homoscedastic stochastic clock factor, and leave the extensions for a
future research.

To complete the model, we need to write down a convenient specification for the activity At, which then would allows
us to solve for the equilibrium asset prices in the manner outlined in the previous section. We can obtain very tractable
models when the activity shocks follow conditional infinitely divisible distributions. The next section presents the key
technical ideas used to solve the model.

3. Infinitely divisible distributions

A convenient specification for the time-change shock is given by an infinitely divisible distribution. We provide the key
details below; for a comprehensive overview refer to Cont and Tankov (2004), among others.

A univariate infinitely divisible random variable is uniquely specified by its characteristic triplet ðb,s,nÞ, where s is the
diffusion of the Gaussian part of its distribution, b is drift, and nðdxÞ is a positive measure on R, called Lévy measure, which
satisfies nðf0gÞ ¼ 0 and

R
Rðx

241ÞnðdxÞo1.1 Intuitively, the infinitely divisible distribution extends the Gaussian one by
allowing ‘‘jumps’’. The interpretation of n in this case is that for any set A inR, nðAÞ specifies the expected number of jumps
falling in A per unit of time.

For every infinitely divisible distribution there exists a continuous-time random walk L(t), called Lévy process, such that its
increment DLðtþ1Þ ¼ Lðtþ1Þ�LðtÞ possesses this distribution. The reverse is also true: for every Lévy process L(t) its discrete-
time increments are infinitely divisible. This allows us to associate with infinitely divisible discrete-time random variables the
increments to the continuous-time Lévy processes. In this paper we specialize on infinitely divisible distributions associated
with non-decreasing and positive processes L(t) called subordinators. It can be shown that such L(t) has no Brownian motion
component, so that s¼ 0, and its drift and Lévy measure nðdxÞ are restricted to positive support.

A convenient specification of the subordinator is given by its moment-generating function jðuÞ :

EeuDLðtÞ
¼ ejðuÞ: ð16Þ

As the variance of the Brownian motion component of the subordinator is zero, ignoring the deterministic drift term, its
moment-generating function can be written in the following way:

jðuÞ ¼
Z 1

0
ðeux�1ÞnðdxÞ: ð17Þ

This is well-defined for all uo0; for the parametric examples we consider in the paper, the integral can also be extended to
positive u below a certain upper bound.

An example of the infinitely divisible distributions includes tempered stable distributions. As shown in Cont and
Tankov (2004), the Lévy density for a tempered stable distribution is given by

nðxÞ ¼ c
e�px

xaþ1
1x40 ð18Þ

for c40,0oao1 and p40. An intuitive interpretation of c is that of a scale controlling the overall intensity of small and
big jumps. The parameter a governs the local behavior of the process: when it is closer to 0 the process moves by big jumps
with periods of tranquility between them, while a near 1 implies numerous small oscillations between rare big jumps. The
coefficient p represents a tempering parameter dampening the large jumps of the process L(t). It plays a critical role to
control the tails of the distribution and ensure the existence of the moments of the distribution. Indeed, the moment-
generating function for the tempered stable class can be computed in the closed form as

jðuÞ ¼ cGð�aÞð½p�u�a�paÞ: ð19Þ

Notably, it is defined for all uop. Hence, the higher the tempering parameter, the less heavy are the tails of the
distribution, which guarantees the existence of the moment-generating function for positive and not too large u.

A convenient candidate for the driving shocks to the activity state At +1 are discrete-time increments to the Lévy
subordinator, such as a tempered stable or its limiting case of a¼ 0, gamma distribution. Such a choice guarantees the
positivity of the activity level, and therefore, the positivity and the non-decreasingness of the state St. This approach is
similar to Barndorff-Nielsen and Shephard (2001), who use distributions with positive support to model the shocks to the
volatility processes in the economy.

4. Pricing implications of the time change

To study the effect of the time-change shocks, we first consider a case when the conditional mean of the activity
process is constant. We consider an extension of the model which incorporates predictable drift component in Section 4.2.
1 Multivariate extensions of the infinitely divisible distributions can be incorporated by replacing scalar parameters with their appropriate vector

and matrix counterparts.
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4.1. I.I.D. activity

Let us first start with the case when time-change shocks are i.i.d. That is, we write down

At ¼mþxt ð20Þ

for a constant m and infinitely divisible shocks xt . The time-change shock xtþ1 is a subordinator, that is, we set the drift
and the variance of its Brownian component to zero, and restrict the Lévy density n to positive support.

When the consumption and dividends are Gaussian in business time and time-change shocks xtþ1 are infinitely
divisible, one can show that the distribution of consumption and dividends in calendar time is infinitely divisible as well.
The moment-generating function of the growth rates can be written in the following way:

logEte
uugtþ 1 ¼mmuuþ 1

2
uumSuþ

Z
R2

ðeuux�1Þncdðxc ,xdÞ dxc dxd: ð21Þ

In particular, the drift is mm, the variance of the diffusion component is mS and the bivariate Lévy density ncdðxÞ of
consumption and dividend growth rates is given by

ncdðxc ,xdÞ ¼

Z
Rþ

f ð½xc xd�u;ms,SsÞnðdsÞ, ð22Þ

where f(x; A, B) denotes the multivariate Gaussian pdf with mean A and variance B:

f ðx;A,BÞ ¼
1

ð2pÞjBj1=2
e�1=2ðx�AÞuB�1ðx�AÞ: ð23Þ

Notably, the consumption and dividend growth rates are i.i.d. in calendar time. However, unlike their dynamics in
business time, they are no longer Gaussian. Indeed, the first two terms in (21) represent the drift and the variance of the
Gaussian component of the two series. The last term captures the non-Gaussian, Lévy component in their dynamics, and is
the main focus of this paper. It is worthwhile to note that this non-Gaussian component is not directly built in into the
growth rates in calendar time, but arises due to the time deformation of the observations of Gaussian consumption and
dividends through a stochastic clock. Indeed, in the absence of time-change risks, consumption and dividends would be
Gaussian in calendar time as well, as we showed in Section 2.2.

We can use the solution to the endowment dynamics in calendar times to solve for the equilibrium asset prices in the
economy. As the consumption growth is i.i.d., there is no predictability in the economy, so that the risk-free rate and price-
dividend ratios for any asset are constant. In equilibrium, the discount factor is given by

mtþ1 ¼ ylogdþðy�1Þbc,0�gDctþ1 ð24Þ

for a constant bc,0 defined in the A.1. Hence, as in the standard power-utility case, investors are concerned only about
shocks in calendar consumption growth, and their price of risks is equal to the risk-aversion coefficient g. Time change
affects consumption process, as its distribution in calendar time is different from that in business time, the time-change
shocks xt do not receive a separate risk compensation.

We further show in A.1 that as price-dividend ratios are constant, the returns on the consumption asset rc,t and on a
dividend-paying asset rd,t move one-to-one with their respective cash flows:

rc,tþ1 ¼ bc,0þDctþ1,

rd,tþ1 ¼ bd,0þDdtþ1: ð25Þ

The return processes inherit the properties of the economic fundamentals. In particular, returns are i.i.d. and follow
infinitely divisible distribution.

The risk premia on the consumption and dividend assets reflect the compensation for the systematic consumption risk
in the economy. In the Appendix we show that the required compensations for holding the consumption and dividend
assets can be expressed in the following way:

logðEtRc,tþ1Þ�rft ¼ gms2
c þ

Z
R
ðexcþe�gxc�eð1�gÞxc�1ÞncðxcÞ dxc ,

logðEtRd,tþ1Þ�rft ¼ gms2
cdþ

Z
R2

ðexdþe�gxc�e�gxc þxd�1Þncdðxc ,xdÞ dxc dxd: ð26Þ

The first component in the two expressions represents a traditional compensation for the Gaussian risks in
consumption and dividends, equal to the level of risk-aversion times the covariance between the Gaussian components
in returns and the consumption growth in calendar time. On the other hand, the second piece reflects pricing of the Lévy
risks in consumption and dividend streams, which arises due to a non-Gaussian time change of the endowment dynamics
in calendar time. This Lévy compensation can be intuitively thought as the summation over all possible ‘‘jumps’’ xc, xd in
consumption and dividends weighted by their risk compensation:

excþe�gxc�eð1�gÞxc�1
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Fig. 1. Lévy risk compensation for consumption asset in the i.i.d. model specification.

Fig. 2. Lévy risk compensation for dividend asset in the i.i.d. model specification.
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for the consumption asset and

exdþe�gxc�e�gxc þxd�1

for the dividend asset. We plot this Lévy risk compensation for consumption asset in Fig. 1 for g¼ 0:5 and 10 and for
dividend asset in Fig. 2 for g¼ 10. As can be seen from the first figure, when the risk aversion is bigger than 1, the agent is
very averse to large negative drops in consumption growth, and the risk compensation increases exponentially for large,
negative moves xc.

2 The case of a dividend asset reveals a similar non-linear relation between the risk compensation for
holding an asset and systematic non-Gaussian risks in dividend stream. In particular, investors require a substantial Lévy
risk compensation for the assets which pay little when consumption growth falls substantially.

The asymmetry and non-linearity in risk premium compensation for positive and negative moves in consumption and
dividends, absent in traditional Gaussian models, can be related to the compensations for higher order moments of the
consumption and dividend dynamics. We use Taylor expansion to expand the integrand in the risk premia around x=0 and,
using the properties of Lévy distributions, rewrite the risk premium in terms of the moments (cumulants) of the
2 Substantial risk compensation for large negative consumption jumps is a central feature of disaster models, see, e.g. Martin (2010), Barro (2006),

Rietz (1988).
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underlying fundamentals:

logðEtRc,tþ1Þ�rft �
X1
j ¼ 2

1þð�gÞj�ð1�gÞj

j!
kj, ð27Þ

and similar for the dividend asset:

logðEtRd,tþ1Þ�rft ¼ gk11þ
1

2
ð�3g2k21þ3gk12Þþ

1

12
ð2g3k31�3g2k22þgk13Þþ � � � : ð28Þ

In the above expressions, kj refers to the jth cumulant of consumption growth:

k2 ¼ VarðDcÞ,

k3 ¼ EðDc�EðDcÞÞ3,

k4 ¼ EðDc�EðDcÞÞ4�3VðDcÞ2, ð29Þ

and kij is the bivariate cumulant of the consumption and dividend growth rates:

k11 ¼ EðDc�EðDcÞÞðDd�EðDdÞÞ,

k21 ¼ EðDc�EðDcÞÞ2ðDd�EðDdÞÞ,

k12 ¼ EðDc�EðDcÞÞðDd�EðDdÞÞ2, ð30Þ

etc.
Similar to standard Gaussian consumption CAPM model, the risk premium on any asset loads on the covariance of the

dividend growth with the consumption growth with a risk-aversion coefficient g. However, unlike the standard model,
skewness, excess kurtosis and higher cumulants and co-cumulants of consumption and dividend growth enter into the risk
compensation equation as well. For example, a negative loading of �3g2=2 on k21 signifies that, controlling for all other
moments and co-moments of consumption and dividend growth, investors dislike assets which tend to pay little in times
when the consumption deviates most from its mean, which can also be seen in Fig. 2. These results on compensations for
higher order moments are similar to Dittmar (2002) and Harvey and Siddique (2000), who apply the non-linear pricing
kernel framework of Bansal and Viswanathan (1993). In our case the pricing kernel is linear, and it is the non-Gaussianity
of the time change which leads to the deviation from standard consumption CAPM.

Notably, we can compute the risk compensations in (26) in a closed form when the activity shocks follow tempered
stable distribution:

logEtRc,tþ1�rft ¼ gs2
c mþcGð�aÞ ðp�mc�

1
2s

2
c Þ
a
þ

�
ðpþgmc�

1
2 g

2s2
c Þ
a
�ðp�ð1�gÞmc�

1
2ð1�gÞ

2s2
c Þ
a
�pa

o
,

logEtRd,tþ1�rft ¼ gscdmþcGð�aÞ ðp�md�
1
2s

2
dÞ
a
þ

�
pþgmc�

1
2g

2s2
c

� �a
� pþgmc�md�

1
2ðg

2s2
c þs

2
d�2gscdÞ

� �a
�pa

o
: ð31Þ

The expressions above are well-defined if tempering parameter p is high enough. For example, for consumption asset
the risk premium exists if p4mcþ

1
2s

2
c , p4ð1�gÞmcþ

1
2ð1�gÞ

2s2
c , and p4�gmcþ

1
2g

2s2
c , and similar for the dividend asset.

4.2. Predictable activity

Previously we assumed that the conditional mean of the activity process was constant, EtAtþ1 �m, so that consumption
and returns in calendar times were i.i.d. Now we make the conditional mean to be time-varying, and in particular, we
model the activity as a non-negative AR(1) process driven by infinitely divisible innovations xt:

Atþ1 ¼mþrAtþxtþ1: ð32Þ

The parameter r 2 ð0,1Þ governs the persistence in At, and m40 determines a non-stochastic drift of the time change. Note
that as the activity shocks xt are positive, At is guaranteed to take only positive values as well; see Barndorff-Nielsen and
Shephard (2003) for further discussion on autoregressive processes with non-Gaussian innovations.

With this modification, the consumption and dividend growth rates are no longer i.i.d. in calendar time: the conditional
mean and volatility of the two streams are time-varying and persistent with At. The conditional distribution of these two
series, however, is still infinitely divisible. The conditionally Gaussian part of their distribution possesses time-varying
means and volatilities linear in the activity state At, while the pure Lévy shock is characterized by a time-invariant jump
measure, which is similar to that in the previous section. The details for the moment-generating functions and related
equations are provided in the Appendix.

The time-variation in the activity state variables drives the equilibrium asset prices in the economy. In particular, in
Appendix we show that the equilibrium price–consumption ratio is linear in the activity variable At:

pct ¼Hc,0þHc,1At : ð33Þ
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The parameter Hc,1 measures the sensitivity of the price–consumption ratio to the fluctuations in the activity state, and is
given by

Hc,1 ¼
r

1�k1r
1�

1

c

� �
mcþ

1

2
ð1�gÞs2

c

� �
: ð34Þ

The sign of the coefficient depends on the relative magnitudes of the model and preference parameters. For reasonable
values of mc and sc , the expression in the last bracket is positive. Hence, the sign of Hc,1 depends on the level of
intertemporal substitution of the agent, c. As in Bansal and Yaron (2004), we require that c41, so that the substitution
effect dominates the wealth effect. In this case, Hc,140, so that the equilibrium prices in the economy rise when the
economic activity is high.

Given the solution to the equilibrium price–consumption ratio, we can solve for the equilibrium discount factor, which
allows us to price any asset in the economy. We can write down the equilibrium discount factor in the following way:

mtþ1 ¼m0þmaAt�lxxtþ1�lcDctþ1, ð35Þ

where the discount factor loadings m0 and ma and market prices of risks lx and lc depend on the model and preference
parameters. As in the standard power-utility models, the market price of consumption risk lc is equal to the risk-aversion
coefficient g. The novel feature of the model is the pricing of the time-change innovations xtþ1. Unlike the previous case
when the activity state variable is i.i.d., in the presence of persistent time-change shocks investors with recursive utility
are concerned with the innovations in the activity variable At, and time-change shocks receive a non-zero risk
compensation. When agents have preference for early resolution of uncertainty, that is, g41=c, for reasonable parameter
values the market price of the time-change risks is positive, lx40. That is, the agents dislike fluctuations in the activity in
the economy, and hence demand risk compensation for the exposure for this source of risk. The intuition for this result is
very similar to that in the long-run risks literature, which shows that when investors have preference for the timing of
resolution of uncertainty, they dislike fluctuations in the expected growth and require positive risk compensation for these
types of risks.

Using the equilibrium discount factor, we can solve for the equilibrium risk-free rate rft and price–dividend ratio pdt.
Their solutions are linear in the activity state At,

pdt ¼Hd,0þHd,1At ,

rft ¼ F0þFaAt , ð36Þ

and the equilibrium loadings are provided in the Appendix.
We can combine these solutions to the model returns to derive the expressions for the risk premia for holding the

consumption and the dividend asset. The risk premia on these assets satisfy

logðEtRc,tþ1Þ�rft ¼ gs2
c ðmþrAtÞþ

Z
R2

Kcðxc ,xlÞnclðdxc ,dxlÞ,

logðEtRd,tþ1Þ�rft ¼ gscdðmþrAtÞþ

Z
R3

Kdðxc ,xd,xlÞncdlðdxc ,dxd,dxlÞ, ð37Þ

where the solutions for the Lévy measures of consumption and activity ncl, consumption, dividend and activity shocks ncdl

as well as the risk compensation kernels Kc and Kd, are provided in the Appendix. The intuitive interpretation of the
integrals in the Lévy component is that of a sum of per-jump Lévy risk compensation Kc and Kd, weighted by the expected
number of jumps ncl and ncdl, respectively. Indeed, the Lévy densities n measure the expected number of non-Gaussian
moves (jumps) in consumption (xc), dividend (xd) and activity shocks (xl). Notably, the integrals in the risk premia
expressions can be computed in the closed form when activity shocks follow tempered stable distributions. The technical
restriction which guarantees the existence of market prices is that the tempering parameter p is high enough.

As in the previous section, the first part in the risk premium is similar to the standard CCAPM-type risk compensation
for the Gaussian components of the return and consumption dynamics. The second term computes the non-Gaussian risk
premium component due to the time-change shocks. The risk premium on the assets is time-varying, and is driven by the
fluctuations in the activity in the economy. In particular, the required compensations are the highest when the expected
activity (expected consumption growth and its volatility) is high.

In the current setup, all the time-variation in the economy is generated by the activity rate At which is a sufficient
statistics to predict the distribution of the economy in all future periods. We can extend our model of the time change
to incorporate several activity factors, stochastic volatility or more complicated moving average specifications, which
would enrich the set of the economic states and retain the analytic tractability of the model. We leave these extensions for
future research.
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5. Model output

5.1. Data and calibration

We use a numerical calibration to explore the implications of our model for the asset prices. While econometric
methods are available to estimate the model, such as the ones described in Bidarkota and Dupoyet (2007) and Bidarkota
and McCulloch (2003), we do not attempt them in this paper. The reason is that in the current specification, the model is
too restrictive to be confronted with the complex dynamic features of the data. For example, as we discussed in
Section 2.2, when the conditional variance of the activity shocks is constant, the conditional mean and variance of
consumption growth rate are perfectly positively correlated. This is not likely to hold in the data: the empirical evidence
suggests that this correlation is negative. Further, our choice of the tempered stable distribution for the activity shocks
implies that the skewness of consumption growth in the model is mildly positive, which is also counterfactual. One can
enrich the model specification by allowing for a separate stochastic volatility of the activity shocks and entertaining more
realistic distributions for the activity shocks. We leave it for future research, and instead calibrate the model to match the
key unconditional moments of the data, and analyze the implications for risk premium and asset prices.

We assume an annual decision interval, and use annual macroeconomic and financial data from 1930 to 2007 to
calibrate the parameters of the model. In particular, we use annual real consumption series from the BEA tables of real
expenditures on non-durable goods and services. The market returns and dividend growth rates, computed for a broad
value-weighted portfolio, and the risk-free rate, corresponding to the short-term inflation-adjusted yields, are obtained
from CRSP. Summary statistics for the consumption and dividend growth rates and the market return equity premium are
presented in Table 1. The mean consumption and dividend growth rate is about 2%. The volatility of consumption is 2%,
while that of the dividend growth is much larger and equal to 11%. The consumption and dividend growth rates are
positively correlated with a correlation coefficient of 0.6. Finally, the average equity premium in our sample is 5%, and the
mean risk-free rate is about 1%.

We calibrated values for the key model parameters reported in Table 2. Specifically, the persistence of the activity
shocks is set to r¼ 0:60. This is consistent with the persistence of the risk-free rate in the data of 0.59; note that in the
model, the risk-free rate is linear in the activity state, so that the persistence in the activity shocks is equal to that of the
interest rates. Further, the activity shocks determine the persistence in the conditional drift and volatility of consumption
and dividend growth rates; see Eq. (15). The monthly persistence in these conditional moments implied by our calibration
is r1=12 ¼ 0:96, which is quite close to the values entertained in the long-run risks literature.

Next, we assume that the activity shocks follow tempered stable distribution characterized by scale and intensity
parameters c and a and tempering parameter p; the moment-generating function for this distribution is given in Eq. (19) in
Section 3. As the activity shocks are not observed in the data, we calibrate these parameters to a¼ 0:1, p¼ 11 and c=3 to
target the key moments of the market return data. Notably, the choice of the tempering parameter p guarantees the
existence of the asset prices and moments of returns.

The baseline calibration values for the preference parameters are reported in Table 2. Specifically, we let the subjective
discount factor d equal to 0.994. The baseline risk aversion parameter is set at 10, and the intertemporal elasticity of
Table 1
Summary statistics for real consumption and dividend growth rates, market risk premium and risk-free rate. Annual observations from 1930 to 2008.

Standard errors are Newey–West corrected using four lags.

Value S. E.

EðDcÞ 1.92 (0.29)

EðDdÞ 1.12 (0.96)

sðDcÞ 2.12 (0.59)

sðDdÞ 10.97 (2.91)

CorrðDc,DdÞ 0.60 (0.14)

E(rd�rf) 5.22 (2.03)

E(rf) 0.64 (0.69)

Table 2
Calibrated and implied model parameter values. Annual frequency.

Calibrated
r a p c d g
0.60 0.10 11 3 0.994 10

Implied
m sc sd tcd

0.03 0.02 0.11 0.61
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substitution at 1.5. This configuration implies that the agent has a preference for early resolution of uncertainty, which has
important implications for the equilibrium prices, as discussed in the previous section. Notably, high value of g raises the
overall level of the risk premium to help better match the financial data, so we also present the model results for higher
levels of risk aversion of 20 and 50.

Given the calibrated activity parameters, we can solve for the implied values of the remaining parameters using the
consumption and dividend dynamics. First, we restrict the activity dynamics by assuming that on average, the state of the
economy moves one-to-one with the calendar time:

EðDStÞ � EðAtÞ ¼ 1: ð38Þ

We can use this restriction to solve for the drift parameter m40 in the activity specification:

m¼ 1�r�EðxÞ, ð39Þ

where the mean of activity shocks is equal to

EðxÞ ¼�cGð�aÞapa�1: ð40Þ

This implies that the unconditional mean and variance of the consumption and dividend shocks in calendar time are
given by

Egtþ1 ¼ m,

Vargtþ1 ¼Sþ
1þr2

1�r2
VarðxÞmmu, ð41Þ

where the variance of the activity shocks is equal to

VarðxÞ ¼ cGð�aÞaða�1Þpa�2: ð42Þ

Hence, we can use the observed mean and variance of the two growth rates in calendar time to solve for their mean m and
variance S in business time, given the persistence r and variance VarðxÞ of the activity shocks. Their values are provided in
Table 2.

5.2. Implications for risk premium

The model output for the risk premia and the interest rates is presented in Table 3. When the risk-aversion coefficient is
10, the risk premium on consumption asset is about 0.5%, while that on the dividend asset is about 1.4%. The risk
compensations increase to 2.2% and 6.7%, respectively, when the risk-aversion coefficient increases to g¼ 50. Hence, we
require a quite high coefficient of the risk aversion to account for the magnitude of the risk premium in the data. The risk-
free rate stays at about 1.5% for all the considered values, which broadly matches the data.

The key focus of our paper is on the Lévy part of the risk premium. Notably, the Lévy risk premium component due to
the time-change shocks account for 40% of the total risk compensation on the consumption asset, and about one-third of
the risk premium on the dividend asset. The relative importance of the non-Gaussian risks is consistent with other studies;
for example, using alternative approaches, Shaliastovich (2010). Broadie et al. (2007) and Pan (2002) estimate the risk
premium due to non-Gaussian jump-risk to be also about one-third of the total equity premium in the sample. Similarly,
Bidarkota and Dupoyet (2007) show that incorporation of the fat tails into the consumption process can raise the equity
premium by 80%, relative to standard models.
Table 3
Model-implied risk premium on consumption and dividend asset and its decomposition into Gaussian and Lévy components, and model-implied risk-

free rate for a range of risk-aversion coefficients.

g¼ 10 g¼ 20 g¼ 50

Risk premium
Consumption asset

Gaussian 0.27 0.55 1.37

Lévy 0.19 0.36 0.81

Total 0.46 0.91 2.18

Dividend asset

Gaussian 0.88 1.76 4.41

Lévy 0.51 0.96 2.25

Total 1.39 2.72 6.66

Risk-free rate: 1.53 1.34 1.60
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To get further insight on the Lévy risk compensation in the case with persistent activity shocks, we plot the risk
compensation kernel for the consumption asset Kc in Fig. 3. As in the i.i.d. case, the agent demands risk premium for being
exposed to non-Gaussian consumption jumps. In addition to that, when agents have preference for early resolution of
uncertainty, the activity shocks receive a separate risk premium, so the risk compensation kernel also depends on the
activity jumps. The total Lévy risk premium is equal to the sum of the compensations for consumption and activity jumps
weighted by the expected number of jumps. The expected number of jumps, given by the joint Lévy density of
consumption and activity shocks, is plotted in Fig. 4. Notably, in our specification, most of the distribution mass is
concentrated on small consumption and activity shocks. Large jump shocks which demand a large jump premium do not
receive much weight in the total sum. Hence, we require a large risk-aversion coefficient which steepens the kernel
function in Fig. 3 to match the magnitude of the risk premium in the data.

An alternative way to match the equity premium and keep risk aversion at a low level is to entertain different
distributional assumptions on the activity shocks and their impact on the consumption and dividend streams, which
would assign more weight to the tails of the density in Fig. 4. Many of the structural asset-pricing models developed in the
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recent literature entertain large negative moves in the economic inputs such as Eraker and Shaliastovich (2008), Drechsler
and Yaron (2011), Gabaix (2007), Bates (2008), Barro (2006), Benzoni et al. (2010), Liu et al. (2005), or beliefs of the agents
(Bansal and Shaliastovich, 2010), which impact the left tail of the distributions. We leave the extension of our time-
deformation model along these lines to further research.

6. Conclusion

We develop a discrete-time endowment economy featuring Epstein–Zin utility function and non-Gaussian risks driven
endogenously by economic separation of time scales along the lines of Stock (1988). While consumption and dividends are
i.i.d. Gaussian in business time, in calendar time their dynamics is non-Gaussian because of the Lévy time-change clock
that connects business time to calendar time. This provides a convenient and tractable extension of standard equilibrium
models for pricing non-Gaussian risks. We show that using log-linearization methods we can obtain solution for financial
prices up to integral operations in general, or in closed form for the tempered stable distributions.

The deviations from Gaussianity imply that the agents require compensations for higher order moments and co-
moments of consumption and dividend growth rates of the assets. Further, when activity shocks are persistent, this gives
rise to the variation in the expected consumption growth and its conditional volatility, similar to the long-run risks model.
These fluctuations lead to the time-variation in the risk premium and the volatilities of the returns, driven by the activity
shocks.

In the calibration, we show that the Lévy risk premium accounts for about one-third of the overall premium in the
economy. The model can match the risk-free rate, however, it still required relatively high risk aversion to match the level
of the risk premium. One way to resolve that is to extend the model to assign more weight to the large non-Gaussian
jumps in consumption and activity shocks.
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Appendix A. Model solution

A.1. I.I.D. case

Let us first solve the model in when the time change is i.i.d.
Conjecture that the price–consumption ratio is constant. In this case, we can express the log return on the consumption

asset in the following way:

rc,tþ1 ¼ bc,0þDctþ1, ðA:1Þ

where bc,0 is related to the level of the price–consumption ratio.
Using the distributional properties of consumption growth in (21) and the Euler condition (4), we can solve for the level

of the return process:

bc,0 ¼�logd�
m

y
ðð1�gÞmcþ

1

2
ð1�gÞ2s2

c Þ�
1

y

Z
R
ðeð1�gÞxc�1ÞncðxcÞ dxc , ðA:2Þ

where we defined the univariate Lévy density of consumption growth

ncðxcÞ ¼

Z
Rþ

f ðxc;mcs,s2
c sÞnðdsÞ:

The equilibrium risk-free rate satisfies

rft ¼� ylogdþðy�1Þbc,0þm �gmcþ
1

2
g2s2

c

� �� �
þ

Z
R
ðe�gxc�1ÞncðxcÞ dxc: ðA:3Þ

Finally, the logarithm of the expected return on the wealth portfolio Rc,t + 1 = exp(rc,t +1) is equal to

logEtRc,tþ1 ¼ bc,0þm mcþ
1

2
s2

c

� �
þ

Z
R2

ðexc�1ÞncðxcÞ dxc : ðA:4Þ

Therefore, the risk premium on consumption asset is given by

logðEtRc,tþ1Þ�rft ¼ gms2
c þ

Z
R
ðexþe�gx�eð1�gÞx�1ÞncðxcÞ dxc : ðA:5Þ

The expression for the risk premium on a dividend-paying asset is obtained in a similar way.
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A.2. AR(1) case

The joint conditional moment-generating function of consumption and dividend streams gt +1 and activity shocks xtþ1

can be written in the following form:

logEte
ucdu gtþ 1þulxtþ 1 ¼ ½mþrAt� muucdþ

1

2
ucdu Sucd

� �
þ

Z
Rþ
ðe½muucdþ1=2ucdu Sucdþul�z�1ÞnðzÞ dz

¼ ½mþrAt� muucdþ
1

2
ucdu Sucd

� �
þ

Z
R3

ðeuux�1ÞncdlðxÞ dx, ðA:6Þ

where the joint Lévy density ncdlðxÞ is given by

nðxc ,xd,xlÞ ¼ f
xc

xd

" #
;mxl,Sxl

 !
nðxlÞ: ðA:7Þ

Integrating out the dividend component, we can obtain the conditional moment-generating function for consumption
and activity shocks:

logEte
ucDctþ 1þulxtþ 1 ¼ ½mþrAt � mcucþ

1

2
u2

cs
2
c

� �
þ

Z
R2

ðeuux�1Þnclðxc ,xlÞ dx ðA:8Þ

for a joint Lévy density of consumption growth and activity shocks,

nclðxc ,xlÞ ¼ fnðxc;mcxl,s2
c xlÞnðxlÞ: ðA:9Þ

To solve for the equilibrium asset prices, we log-linearize the return on consumption asset, which can be conveniently
expressed in the following form:

rc,tþ1 ¼�logk1þk1ðpctþ1�EðpctÞÞ�ðpct�EðpctÞÞþDctþ1, ðA:10Þ

where k1 is an endogenous log-linearization coefficient, related to the unconditional level of the price–consumption ratio.
Conjecture that the price–consumption ratio is affine in the activity state At:

pct ¼Hc,0þHc,1At : ðA:11Þ

Then, we can express the consumption return in terms of the underlying state variables and shocks in the economy:

rc,tþ1 ¼�logk1þHc,1ðk1ðm�EðAÞÞþEðAÞÞþHc,1ðk1r�1ÞAtþk1Hc,1xtþ1þDctþ1, ðA:12Þ

where the unconditional mean of the activity state E(A) is equal to

EðAÞ ¼
mþEðxtÞ

1�r
:

We can use the Euler equation (4) to solve for the equilibrium coefficients in the price–consumption ratio. The loading
Hc,1 satisfies

Hc,1 ¼
r

1�k1r
1�

1

c

� �
mcþ

1

2
ð1�gÞs2

c

� �
, ðA:13Þ

while the log-linearization coefficient, which is related to the unconditional level of the price–consumption ratio, is given
by the recursive equation:

logk1 ¼ logdþHc,1ðk1ðm�EðAÞÞþEðAÞÞþm 1�
1

c

� �
mcþ

1

2
ð1�gÞs2

c

� �
þ

1

y

Z
R2

ðeð1�gÞxc þyk1Hc,1xl�1Þnclðxc ,xlÞ dx: ðA:14Þ

We can now express the discount factor in (3) in terms of the underlying state variables and innovations in the
economy:

mtþ1 ¼m0þmaAt�lxxtþ1�lcDctþ1, ðA:15Þ

where the discount factor loadings m0 and ma and market prices of risks lx and lc depend on the model and preference
parameters:

m0 ¼ ylogdþðy�1Þð�logk1þHc,1ðk1ðm�EðAÞÞþEðAÞÞÞ,

ma ¼ ðy�1Þðk1r�1ÞHc,1,

lx ¼ ð1�yÞk1Hc,1,

lc ¼ g: ðA:16Þ

Using the Euler equation, we obtain that the risk-free rate is given by

rft ¼ F0þFaAt ðA:17Þ
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for

F0 ¼�m0þm lcmc�
1

2
l2

cs
2
c

� �
�

Z
R2

ðe�lcxc�lxxl�1Þnclðxc ,xlÞ dx,

Fa ¼ r
1

c
mc�

1

2
ðgþ 1

c
ðg�1ÞÞs2

c

� �
: ðA:18Þ

Combining the equations for the consumption asset (A.12) and risk-free rate (A.17), we obtain that the risk premium on
consumption asset satisfies

logðEtRc,tþ1Þ�rft ¼ gs2
c ðmþrAtÞþ

Z
R2

Kcðxc ,xlÞnclðdxc ,dxlÞ ðA:19Þ

for

Kcðxc ,xlÞ ¼ exc þk1Hc,1xlþe�lcxc�lxxl�eð1�lc Þxc þyk1Hc,1xl�1: ðA:20Þ

We use similar methods to compute the price–dividend ratio and the risk premium on a dividend asset. Conjecture that
the price–dividend ratio is linear in the activity variable At:

pdt ¼Hd,0þHd,1At : ðA:21Þ

Using the Euler equation for the log-linearized dividend return, we can solve for the equilibrium loadings in the
price–dividend ratio:

Hd,1 ¼
r

1�kd,1r
md�

1

c
mcþ

1

2
gþ 1

c
ðg�1Þ

� �
s2

c�2gscdþs2
d

� �� �
, ðA:22Þ

where the log-linearization coefficient for the dividend return kd,1 satisfies the recursive equation

logkd,1 ¼m0þHd,1ðkd,1ðm�EðAÞÞþEðAÞÞþm mu
�lc

1

� �
þ

1

2

�lc

1

� �u
S
�lc

1

� � !

þ

Z
R3

ðe�lcxc þ xdþðkd,1Hd,1�lxÞxl�1ÞncdlðxÞ dx: ðA:23Þ

The risk premium on a dividend asset is given by

logðEtRd,tþ1Þ�rft ¼ gscdðmþrAtÞþ

Z
R3

Kdðxc ,xd,xlÞncdlðdxc ,dxd,dxlÞ, ðA:24Þ

for

Kdðxc ,xd,xlÞ ¼ exdþkd,1Hd,1xlþe�lcxc�lxxl�e�lcxc þ xdþðkd,1Hd,1�lxÞxl�1: ðA:25Þ

To obtain closed-form solutions for the asset prices in case when the activity shocks follow tempered stable
distribution, we use the result that

Z
R3

ðeucxc þudxdþulxl�1ÞncdlðxÞ dx¼j mu
uc

ud

" #
þ

1

2

uc

ud

" #
u

S
uc

ud

" #
þul

0
@

1
A, ðA:26Þ

where ju is the moment-generating function of the tempered stable distribution defined in (19).
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