The Burmeister-McElroy Sliced Normal Theorem

Conditional forecasting with probabilistic scenarios

by
Edwin Burmeister
and
Marjorie B. McElroy
Department of Economics
Box 90097
Duke University
Durham, NC 27708-0097

September 24, 1997
Revised April 19, 1999
Revised October 3, 2002

Copyright 1997-2002 by Edwin Burmeister and Marjorie B. McElroy. All rights reserved. Do not quote without permission of the authors.

1. The problem

A conditional forecast produces the mean and variance of return, conditional on the forecasted variables that impact return via a linear factor model. These conditional forecasts are easy to compute because the historical factor realizations are approximately multivariate normal.

However, this is not the way in which many people think about forecasting. Rather, they want to say, "I think there is a 50% chance bond yields will rise by 50 b.p., a 30% chance they will stay the same, and a 20% chance they will fall by 10 b.p."

We will call such forecasts probabilistic scenarios to distinguish them from a pure conditional forecast. We need to compute the joint multivariate distribution for all the factors impacting impact return when the user forecasts some of them with a probabilistic scenario. To do so we need a new result, the Sliced Normal Theorem proved below.

2. Technical background information and notation

In this section we state well-known results and establish notation. One reference for these results is Introduction to the Theory of Statistics by Alexander M. Mood and Franklin A. Graybill (New York: McGraw-Hill Book Company, Inc., Second Edition, 1963), Chapter 9, pages 198219.

The random vector \mathbf{Y} is distributed as the p-variate normal if the joint density of $y_{1}, y_{2}, \ldots, y_{p}$ is

$$
h(\mathbf{Y})=h\left(y_{1}, y_{2}, \ldots, y_{p}\right)=\frac{|R|^{\frac{1}{2}}}{(2 \pi)^{\frac{p}{2}}} e^{-\frac{1}{2}(Y-\mu)^{\prime} R(Y-\mu)} \quad \text { for }-\infty<y_{i}<+\infty \text { and } i=1,2, \ldots, p
$$

and where
(a) R is a positive definite matrix whose elements $r_{i j}$ are constants, and
(b) μ is a $p \times 1$ vector whose elements μ_{i} are constants.

The univariate case with $p=1$ is obtained by setting $r_{11}=\frac{1}{\sigma^{2}}$. The quantity $Q=(Y-\mu)^{\prime} R(Y-\mu)$ is called the quadratic form of the p-variate normal. It is a theorem that

$$
\int_{-\infty}^{+\infty} \cdots \int_{-\infty}^{+\infty} e^{-\frac{1}{2}(Y-\mu)^{\prime} R(Y-\mu)} d y_{1} \cdots d y_{p}=(2 \pi)^{p / 2}|R|^{-1 / 2}
$$

and does not depend on the vector μ.
The $p \times p$ covariance matrix of the y 's is

$$
V=\left[\begin{array}{ccc}
\sigma_{11} & \cdots & \sigma_{1 \mathrm{p}} \\
\vdots & & \vdots \\
\sigma_{\mathrm{p} 1} & \cdots & \sigma_{\mathrm{pp}}
\end{array}\right] .
$$

It is also a theorem (Theorem 9.9, page 211) that $V=R^{-1}$.

We now define the following partitions:
$Y=\binom{Y_{1}}{Y_{2}} \quad \mu=\binom{U_{1}}{U_{2}} \quad R=\left(\begin{array}{ll}R_{11} & R_{12} \\ R_{21} & R_{22}\end{array}\right) \quad \mathrm{V}=\left(\begin{array}{ll}V_{11} & V_{12} \\ V_{21} & V_{22}\end{array}\right)$
where
$Y_{1}=\left(\begin{array}{c}y_{1} \\ \vdots \\ y_{k}\end{array}\right) \quad U_{1}=\left(\begin{array}{c}\mu_{1} \\ \vdots \\ \mu_{k}\end{array}\right) \quad Y_{2}=\left(\begin{array}{c}y_{k+1} \\ \vdots \\ y_{p}\end{array}\right) \quad U_{2}=\left(\begin{array}{c}\mu_{k+1} \\ \vdots \\ \mu_{p}\end{array}\right)$.

Note that R_{11} and V_{11} are $k \times k$.
The following theorem (Theorem 9.11 on page 213) is critical for what follows:
The conditional distribution of Y_{1} given Y_{2} is the k-variate normal with mean
$U_{1}+V_{12} V_{22}^{-1}\left(Y_{2}-U_{2}\right)$
and covariance matrix
$\mathrm{R}_{11}^{-1}=V_{11}-V_{12} V_{22}^{-1} V_{21}$.

Note that the covariance matrix of Y_{1} given Y_{2} does not depend on what the value of Y_{2} is. This fact will be very important.

A probabilistic scenario arises when, instead of forecasting a single realization for the vector Y_{2}, the user forecasts a probability distribution for the vector Y_{2}. There is, however, a consistency issue because the true marginal distribution of Y_{2} is given by

$$
g\left(Y_{2}\right)=\frac{\left|V_{22}\right|^{-\frac{1}{2}}}{(2 \pi)^{\frac{(p-k)}{2}}} e^{-\frac{1}{2}\left(Y_{2}-U_{2}\right)^{\prime} V_{22}^{-1}\left(Y_{2}-U_{2}\right)} .
$$

Also, by definition, the conditional distribution of $y_{1}, y_{2}, \ldots, y_{k}$ given $y_{k+1}, y_{k+2}, \ldots, y_{p}$ is

$$
f\left(Y_{1} \mid Y_{2}\right)=\frac{h(\mathbf{Y})}{g\left(Y_{2}\right)}
$$

Therefore, any forecast by the user other than the probability distribution $g\left(Y_{2}\right)$ is inconsistent with the underlying joint probability distribution $h(\mathbf{Y})$ stated above.

Nevertheless, an economic forecast often entails the belief, perhaps mistaken, that special information can be used to infer that the future will be different from the past.

3. The user-supplied distribution for a probabilistic scenario

Some additional notation is required. As above,

$$
Y=\binom{Y_{1}}{Y_{2}} \quad \text { where } \quad Y_{1}=\left(\begin{array}{c}
y_{1} \\
\vdots \\
y_{k}
\end{array}\right) \text { and } Y_{2}=\left(\begin{array}{c}
y_{k+1} \\
\vdots \\
y_{p}
\end{array}\right) .
$$

A particular realization of the vector Y_{2}, the $i^{\text {th }}$, will be denoted by
$y_{2}^{i} \equiv\left(\begin{array}{c}y_{k+1}(i) \\ \vdots \\ y_{p}(i)\end{array}\right)$.

We take as given a user forecast for the vectors y_{2}^{i} and their associated probabilities p_{i}.
However this user forecast is generated, we take as given the following (marginal) distribution of Y_{2} :

$$
\operatorname{Pr}\left(Y_{2}=y_{2}^{i}\right) \equiv \operatorname{Pr}\left[Y_{2}=\left(\begin{array}{c}
y_{k+1}(i) \tag{1}\\
\vdots \\
y_{p}(i)
\end{array}\right)\right]=p_{i}, \quad p_{i} \geq 0, \quad \sum_{i} p_{i}=1 .
$$

This discrete distribution will be denoted by $\xi\left(Y_{2}\right)$.

4. The probabilistic scenario expected value and variance

Given the user forecast, the expected value of Y_{2} is
$E\left(Y_{2} ; \xi\right)=\sum_{i} p_{i} y_{2}^{i} \equiv U_{2}^{C}$
where the notation $E\left(Y_{2} ; \xi\right)$ denotes that the expectation is taken with respect to the userprovided distribution $\xi\left(Y_{2}\right)$ and where the superscript C denotes "conditional on the user forecast."

Similarly, the $(p-k) \times(p-k)$ covariance matrix of Y_{2} is given by

$$
\begin{align*}
\operatorname{cov}\left(Y_{2} ; \xi\right) & =E\left\{\left[Y_{2}-E\left(Y_{2}\right)\right]\left[Y_{2}-E\left(Y_{2}\right)\right]^{\prime} ; \xi\right\} \\
& =\sum_{i} p_{i}\left\{\left[y_{2}^{i}-\sum_{i} p_{i} y_{2}^{i}\right]\left[y_{2}^{i}-\sum_{i} p_{i} y_{2}^{i}\right]^{\prime}\right\} \tag{3}\\
& \equiv V_{22}^{C}
\end{align*}
$$

Equations (2) and (3) follow directly from the definitions of expected value and covariance.
We require the following Sliced Normal Theorem to infer anything about the distribution of Y_{1} given the user forecast $\xi\left(Y_{2}\right)$. Note also that the user forecast alone tells us nothing about the covariance of Y_{1} and Y_{2}.

5. The Sliced Normal Theorem

From the well-known results stated above in Section 2, for each realization of the random vector $Y_{2}=y_{2}^{i}$, the conditional distribution $f\left(Y_{1} \mid Y_{2}=y_{2}^{i}\right)$ is multivariate normal and has a known mean and covariance matrix:
$\left(Y_{1} \mid y_{2}^{i}\right) \sim \mathscr{N}\left[U_{1}+V_{12} V_{22}^{-1}\left(y_{2}^{i}-U_{2}\right), V_{11}-V_{12} V_{22}^{-1} V_{21}\right]$.
For each i these conditional distributions are slices of the multivariate normal distribution, scaled so that the volume under the density function is one. That is, using the results from Section 2,
$f\left(Y_{1} \mid y_{2}^{i}\right)=\frac{h\left(Y_{1}, y_{2}^{i}\right)}{g\left(y_{2}^{i}\right)}$
where $\frac{1}{g\left(y_{2}^{i}\right)}$ is the scale factor that makes the volume one. Here $g\left(Y_{2}\right)$ is the true marginal distribution of Y_{2}, not the user forecast $\xi\left(Y_{2}\right)$.

The sliced normal distribution for the $p \times 1$ vector \mathbf{Y} is defined by these slices and the usersupplied distribution $\xi\left(Y_{2}\right)$ with mean $U_{2}^{C} \equiv \sum_{i} p_{i} y_{2}^{i}$ and covariance matrix V_{22}^{C}. Note that \mathbf{Y} is not multivariate normal. By Theorem 9.11 of Mood and Graybill stated above, Y_{1} is a mixture of multivariate normals, while the discrete distribution for Y_{2} is $\xi\left(Y_{2}\right)$ defined above. Therefore the joint distribution of $\mathbf{Y}=\left(Y_{1}, Y_{2}\right)$ is complicated.

More formally, from (4) we know that the conditional density of the $k \times 1$ vector Y_{1} for each given $(p-k) \times 1$ vector $Y_{2}=y_{2}^{i}$ is
$f\left(Y_{1} \mid Y_{2}=y_{2}^{i}\right)=$
$\frac{1}{(2 \pi)^{\frac{k}{2}} \sqrt{\left|V_{11}-V_{12} V_{22}^{-1} V_{21}\right|}} e^{-\frac{1}{2}\left[Y_{1}-\left(U_{1}+V_{12} V_{22}^{-1}\left(y_{2}^{\prime}-U_{2}\right)\right)\right]\left[V_{11}-V_{12} V_{22}^{-1} V_{21}\right]^{-1}\left[Y_{1}-\left(U_{1}+V_{12} V_{22}^{-1}\left(v_{2}^{i}-U_{2}\right)\right)\right]}$.
Multiplying (5) by the probability p_{i} gives the equation for the $i^{\text {th }}$ slice of the sliced joint normal:

$$
\varphi\left(Y_{1}, y_{2}^{i}\right) \equiv p_{i} f\left(Y_{1} \mid y_{2}^{i}\right) \quad \text { for } \quad-\infty<y_{j}<\infty, j=1, \ldots, k ; Y_{2}=y_{2}^{i} .
$$

Hence, given the user's forecast for the n realizations $y_{2}^{i}, i=1,2, \ldots, n$, the joint probability density function for the p-variate sliced normal is

$$
\varphi\left(Y_{1}, Y_{2}\right) \equiv\left\{\begin{array}{cc}
p_{1} f\left(Y_{1} \mid y_{2}^{1}\right) & \text { for }-\infty<y_{j}<\infty, j=1, \ldots, k ; Y_{2}=y_{2}^{1} \tag{6}\\
\vdots \\
p_{i} f\left(Y_{1} \mid y_{2}^{i}\right) & \text { for }-\infty<y_{j}<\infty, j=1, \ldots, k ; Y_{2}=y_{2}^{i} \\
\vdots \\
p_{n} f\left(Y_{1} \mid y_{2}^{n}\right) & \text { for }-\infty<y_{j}<\infty, j=1, \ldots, k ; Y_{2}=y_{2}^{n}
\end{array} .\right.
$$

Of course, the conditional distribution of Y_{1} given Y_{2} for the sliced normal distribution is $f\left(Y_{1} \mid Y_{2}=y_{2}^{i}\right)$, while the marginal distribution of Y_{2} is $\operatorname{Pr}\left(Y_{2}=y_{2}^{i}\right)=p_{i}$. The marginal distribution of Y_{1} is

$$
\sum_{i} p_{i} f\left(Y_{1} \mid y_{2}^{i}\right) \quad \text { for }-\infty<y_{j}<\infty, j=1, \ldots, k ; \quad Y_{2}=y_{2}^{i}, i=1, \ldots, n .
$$

The expected value of the vector Y_{1} for the sliced normal distribution is

$$
\begin{align*}
U_{1}^{C} & \equiv E\left(Y_{1}\right) \\
& =\sum_{i} \int_{-\infty}^{\infty} \cdots \int_{-\infty}^{\infty} p_{i} Y_{1} f\left(Y_{1} \mid y_{2}^{i}\right) d y_{1} \cdots d y_{k} \\
& =\sum_{i} p_{i}\left[E\left(Y_{1} \mid y_{2}^{i}\right)\right] \tag{7}\\
& =\sum_{i} p_{i}\left[U_{1}+V_{12} V_{22}^{-1}\left(y_{2}^{i}-U_{2}\right)\right]=U_{1}+V_{12} V_{22}^{-1} \sum_{i} p_{i}\left(y_{2}^{i}-U_{2}\right) \\
& =U_{1}+V_{12} V_{22}^{-1}\left(U_{2}^{C}-U_{2}\right) .
\end{align*}
$$

Similarly the expected value of the vector Y_{2} for the sliced normal distribution is

$$
\begin{align*}
U_{2}^{C} & \equiv E\left(Y_{2}\right) \\
& =\sum_{i} \int_{-\infty}^{\infty} \cdots \int_{-\infty}^{\infty} p_{i} y_{2}^{i} f\left(Y_{1} \mid y_{2}^{i}\right) d y_{1} \cdots d y_{k} \\
& =\sum_{i} p_{i} y_{2} \int_{-\infty}^{\infty} \cdots \int_{-\infty}^{\infty} f\left(Y_{1} \mid y_{2}^{i}\right) d y_{1} \cdots d y_{k} \tag{8}\\
& =\sum_{i} p_{i} y_{2}^{i} \cdot(1) \\
& =\sum_{i} p_{i} y_{2}^{i} .
\end{align*}
$$

We now state the formal result:

Sliced Normal Theorem

The p-variate Sliced Normal Distribution defined by (6) has mean
$\left[\begin{array}{c}U_{1}^{C} \\ U_{2}^{C}\end{array}\right]=\left[\begin{array}{c}U_{1}+V_{12} V_{22}^{-1}\left(U_{2}^{C}-U_{2}\right) \\ \sum_{i} p_{i} y_{2}^{i}\end{array}\right]$
and covariance matrix

$$
V^{*}=\left[\begin{array}{cc}
V_{11}-V_{12} V_{22}^{-1}\left(V_{22}-V_{22}^{C}\right) V_{22}^{-1} V_{21} & V_{12} V_{22}^{-1} V_{22}^{C} \tag{10}\\
V_{22}^{C} V_{22}^{-1} V_{21} & V_{22}^{C}
\end{array}\right] .
$$

Equations (7) and (8) establish (9). We now must prove (10). Note that $V_{22}^{*}=V_{22}^{C}$ by definition. The difficulty involves computing the covariance matrices $V_{12}^{*}=\left(V_{21}^{*}\right)$ and V_{11}^{*}.

6. Computation of V_{11}^{*}

By definition

$$
\begin{equation*}
V_{11}^{*}=\sum_{i} \int_{-\infty}^{\infty} \cdots \int_{-\infty}^{\infty} p_{i}\left(Y_{1}-U_{1}^{C}\right)\left(Y_{1}-U_{1}^{C}\right)^{\prime} f\left(Y_{1} \mid y_{2}^{i}\right) d y_{1} \cdots d y_{k} \tag{11}
\end{equation*}
$$

To ease notation we define
$b \equiv E\left(Y_{1} \mid y_{2}^{i}\right)=U_{1}+V_{12} V_{22}^{-1}\left(y_{2}^{i}-U_{2}\right) ;$
see equation (7). Then (11) may be written as

$$
\begin{aligned}
& V_{11}^{*}= \\
& \sum_{i} \int_{-\infty}^{\infty} \cdots \int_{-\infty}^{\infty} p_{i}\left[\left[Y_{1}-E\left(Y_{1} \mid y_{2}^{i}\right)\right]+\left[E\left(Y_{1} \mid y_{2}^{i}\right)-U_{1}^{C}\right]\right\}\left\{\left[Y_{1}-E\left(Y_{1} \mid y_{2}^{i}\right)\right]+\left[E\left(Y_{1} \mid y_{2}^{i}\right)-U_{1}^{C}\right]\right\} f\left(Y_{1} \mid y_{2}^{i}\right) d y_{1} \cdots d y_{k}= \\
& \sum_{i} \int_{-\infty}^{\infty} \cdots \int_{-\infty}^{\infty} p_{i}\left[\left(Y_{1}-b\right)+\left(b-U_{1}^{C}\right)\right]\left[\left(Y_{1}-b\right)+\left(b-U_{1}^{C}\right)\right] f\left(Y_{1} \mid y_{2}^{i}\right) d y_{1} \cdots d y_{k} .
\end{aligned}
$$

Performing the multiplication in the integrand gives

$$
\begin{align*}
\sum_{i} \int_{-\infty}^{\infty} \cdots \int_{-\infty}^{\infty} p_{i} & {\left[\left(Y_{1}-b\right)\left(Y_{1}-b\right)^{\prime}+\left(b-U_{1}^{C}\right)\left(Y_{1}-b\right)^{\prime}\right.} \tag{13}\\
& \left.+\left(Y_{1}-b\right)\left(b-U_{1}^{C}\right)^{\prime}+\left(b-U_{1}^{C}\right)\left(b-U_{1}^{C}\right)^{\prime}\right] f\left(Y_{1} \mid y_{2}^{i}\right) d y_{1} \cdots d y_{k}
\end{align*}
$$

We now proceed to evaluate the four terms in (13).

$$
\begin{align*}
& \sum_{i} \int_{-\infty}^{\infty} \cdots \int_{-\infty}^{\infty} p_{i}\left(Y_{1}-b\right)\left(Y_{1}-b\right)^{\prime} f\left(Y_{1} \mid y_{2}^{i}\right) d y_{1} \cdots d y_{k}= \tag{14}\\
& \sum_{i} p_{i}\left[\operatorname{var}\left(Y_{1} \mid y_{2}^{i}\right)\right]=\sum_{i} p_{i}\left(V_{11}-V_{12} V_{22}^{-1} V_{21}\right)=V_{11}-V_{12} V_{22}^{-1} V_{21} .
\end{align*}
$$

$\sum_{i} \int_{-\infty}^{\infty} \cdots \int_{-\infty}^{\infty} p_{i}\left(b-U_{1}^{C}\right)\left(Y_{1}-b\right)^{\prime} f\left(Y_{1} \mid y_{2}^{i}\right) d y_{1} \cdots d y_{k}=$
$\sum_{i} \int_{-\infty}^{\infty} \cdots \int_{-\infty}^{\infty} p_{i}\left(Y_{1}-b\right)\left(b-U_{1}^{C}\right)^{\prime} f\left(Y_{1} \mid y_{2}^{i}\right) d y_{1} \cdots d y_{k}=$
$\int_{-\infty}^{\infty} \cdots \int_{-\infty}^{\infty}\left[Y_{1}-E\left(Y_{1} \mid y_{2}^{i}\right)\right] f\left(Y_{1} \mid y_{2}^{i}\right) d y_{1} \cdots d y_{k} \sum_{i} p_{i}\left(b-U_{1}^{C}\right)^{\prime}=$
(0). $\sum_{i} p_{i}\left(b-U_{1}^{C}\right)^{\prime}=0$.

We will use the following result:

$$
\begin{aligned}
& \left(b-U_{1}^{C}\right)=\left[U_{1}+V_{12} V_{22}^{-1}\left(y_{2}^{i}-U_{2}\right)\right]-\left[U_{1}+V_{12} V_{22}^{-1}\left(U_{2}^{C}-U_{2}\right)\right] \\
& =V_{12} V_{22}^{-1}\left(y_{2}^{i}-U_{2}^{C}\right) . \\
& \sum_{i} \int_{-\infty}^{\infty} \cdots \int_{-\infty}^{\infty} p_{i}\left(b-U_{1}^{C}\right)\left(b-U_{1}^{C}\right)^{\prime} f\left(Y_{1} \mid y_{2}^{i}\right) d y_{1} \cdots d y_{k}=\text { using (16) } \\
& \sum_{i} \int_{-\infty}^{\infty} \cdots \int_{-\infty}^{\infty} p_{i}\left[V_{12} V_{22}^{-1}\left(y_{2}^{i}-U_{2}^{C}\right)\right]\left[V_{12} V_{22}^{-1}\left(y_{2}^{i}-U_{2}^{C}\right)\right] f\left(Y_{1} \mid y_{2}^{i}\right) d y_{1} \cdots d y_{k}= \\
& \sum_{i} \int_{-\infty}^{\infty} \cdots \int_{-\infty}^{\infty} p_{i} V_{12} V_{22}^{-1}\left(y_{2}^{i}-U_{2}^{C}\right)\left(y_{2}^{i}-U_{2}^{C}\right)^{\prime} V_{22}^{-1} V_{21} f\left(Y_{1} \mid y_{2}^{i}\right) d y_{1} \cdots d y_{k}= \\
& \left.\sum_{i} p_{i}\left[V_{12} V_{22}^{-1}\left(y_{2}^{i}-U_{2}^{C}\right)\left(y_{2}^{i}-U_{2}^{C}\right)^{\prime} V_{22}^{-1} V_{21}\right]\right]_{-\infty}^{\infty} \cdots \int_{-\infty}^{\infty} f\left(Y_{1} \mid y_{2}^{i}\right) d y_{1} \cdots d y_{k}= \\
& \sum_{i} p_{i}\left[V_{12} V_{22}^{-1}\left(y_{2}^{i}-U_{2}^{C}\right)\left(y_{2}^{i}-U_{2}^{C}\right)^{\prime} V_{22}^{-1} V_{21}\right] \cdot 1= \\
& V_{12} V_{22}^{-1} V_{22}^{C} V_{22}^{-1} V_{21} .
\end{aligned}
$$

Substituting (14), (15), and (17) into (13) gives

$$
\begin{align*}
V_{11}^{*} & =V_{11}-V_{12} V_{22}^{-1} V_{21}+V_{12} V_{22}^{-1} V_{22}^{C} V_{22}^{-1} V_{21} \\
& =V_{11}-V_{12} V_{22}^{-1}\left(V_{22}-V_{22}^{C}\right) V_{22}^{-1} V_{21} . \tag{18}
\end{align*}
$$

7. Computation of V_{21}^{*}

By definition

$$
\begin{align*}
V_{21}^{*} & =\sum_{i} \int_{-\infty}^{\infty} \cdots \int_{-\infty}^{\infty} p_{i}\left(y_{2}^{i}-U_{2}^{C}\right)\left(Y_{1}-U_{1}^{C}\right)^{\prime} f\left(Y_{1} \mid y_{2}^{i}\right) d y_{1} \cdots d y_{k} \\
& =\sum_{i} p_{i}\left(y_{2}^{i}-U_{2}^{C}\right)\left[E\left(Y_{1} \mid y_{2}^{i}\right)-U_{1}^{C}\right]^{\prime} \\
& =\operatorname{using}(12) \text { and }(16) \sum_{i} p_{i}\left(y_{2}^{i}-U_{2}^{C}\right)\left[V_{12} V_{22}^{-1}\left(y_{2}^{i}-U_{2}^{C}\right)\right] \tag{19}\\
& =\sum_{i} p_{i}\left(y_{2}^{i}-U_{2}^{C}\right)\left(y_{2}^{i}-U_{2}^{C}\right) V_{22}^{-1} V_{21} \\
& =V_{22}^{C} V_{22}^{-1} V_{21} .
\end{align*}
$$

Then

$$
\begin{align*}
V_{12}^{*} & =\left(V_{21}^{*}\right)^{\prime} \tag{20}\\
& =V_{12} V_{22}^{-1} V_{22}^{C}
\end{align*}
$$

Comparison of (18), (19), and (20) with (10) completes the proof of the Sliced Normal Theorem.

8. Relationship to ordinary least squares

As is well-known, much of the above is closely related to ordinary least squares regression. To illustrate this fact, consider the multiple regression equation
$Y_{1}=U_{1}+\beta\left(Y_{2}-U_{2}\right)+\varepsilon$
where $\beta \equiv V_{12} V_{22}^{-1}$ is a $k \times(p-k)$ matrix. Taking conditional expectations of (21) gives
$E\left(Y_{1} \mid Y_{2}\right)=U_{1}+\beta\left(Y_{2}-U_{2}\right)$.
Moreover, the covariance matrix of the error term is

$$
\begin{align*}
E\left(\varepsilon \varepsilon^{\prime}\right) & =E\left\{\left[Y_{1}-\left(U_{1}+\beta\left(Y_{2}-U_{2}\right)\right)\right]\left[Y_{1}-\left(U_{1}+\beta\left(Y_{2}-U_{2}\right)\right)\right]^{\prime}\right] \\
& =E\left[\left(Y_{1}-U_{1}\right)\left(Y_{1}-U_{1}\right)^{\prime}\right]+E\left[\beta\left(Y_{2}-U_{2}\right)\left(Y_{2}-U_{2}\right)^{\prime} \beta^{\prime}\right]- \\
& E\left[\left(Y_{1}-U_{1}\right)\left(Y_{2}-U_{2}\right)^{\prime} \beta^{\prime}\right]-E\left[\beta\left(Y_{2}-U_{2}\right)\left(Y_{1}-U_{1}\right)^{\prime}\right] \tag{23}\\
& =V_{11}+\beta V_{22} \beta^{\prime}-V_{12} \beta^{\prime}-V_{21} \beta^{\prime} \\
& =V_{11}+V_{12} V_{22}^{-1} V_{21}-V_{12} V_{22}^{-1} V_{21}-V_{12} V_{22}^{-1} V_{21} \\
& =V_{11}-V_{12} V_{22}^{-1} V_{21}
\end{align*}
$$

which is $\operatorname{cov}\left(Y_{1} \mid Y_{2}\right)$. Also

$$
\begin{align*}
E\left[\left(Y_{2}-U_{2}\right) \varepsilon^{\prime}\right] & =E\left\{\left(Y_{2}-U_{2}\right)\left[Y_{1}-\left(U_{1}+\beta\left(Y_{2}-U_{2}\right)\right)\right]\right\} \\
& =E\left[\left(Y_{2}-U_{2}\right)\left(Y_{1}-U_{1}\right)\right]-E\left[\left(Y_{2}-U_{2}\right)\left(Y_{2}-U_{2}\right)^{\prime} \beta^{\prime}\right] \tag{24}\\
& =V_{21}-V_{22} V_{22}^{-1} V_{21} \\
& =0
\end{align*}
$$

so the error term is orthogonal to the right-hand-side variables.

9. Positive definiteness of the covariance matrix V^{*}

Of course, the covariance matrix V^{*} for the sliced normal distribution given by (10) must be positive definite by definition. Nevertheless, it is an instructive check to verify this fact directly.

We will use the following results:
Let the $p \times p$ matrix \mathbf{A} be partioned into $\mathbf{A}=\left[\begin{array}{ll}A_{11} & A_{12} \\ A_{21} & A_{22}\end{array}\right]$ where A_{11}
is $k \times k, A_{12}$ is $k \times(p-k), A_{21}$ is $(p-k) \times k$, and A_{22} is
$(p-k) \times(p-k)$.
Then $\left|\begin{array}{cc}A_{11} & A_{12} \\ 0 & A_{22}\end{array}\right|=\left|\begin{array}{cc}I & 0 \\ 0 & A_{22}\end{array}\right| \cdot\left|\begin{array}{cc}A_{11} & A_{12} \\ 0 & I\end{array}\right|=\left|A_{11}\right| \cdot\left|A_{22}\right|$.
A reference for (25) is T. W. Anderson, An Introduction to Multivariate Statistical Analysis, ${ }^{\text {nd }}$ Edition, New York: John Wiley \& Sons, 1984, pages 592-593.

If \mathbf{P} is a nonsingular matrix and if \mathbf{A} is positive definite (semidefinite), then $\mathbf{P}^{\prime} \mathbf{A P}$ is positive definite (semidefinite).

A reference for (26) is Henri Theil, Principles of Econometrics, New York: John Wiley \& Sons, 1971, Proposition F3, page 22.

We now prove:
The $k \times k$ matrix $\left[V_{11}-V_{12} V_{22}^{-1} V_{21}\right]$ is positive definite.
Proof:
Let x be any $k \times 1$ vector, $x \neq 0$. Then
$\left(\begin{array}{ll}x^{\prime} & -x^{\prime} V_{12} V_{22}^{-l}\end{array}\right)\left[\begin{array}{ll}V_{11} & V_{12} \\ V_{21} & V_{22}\end{array}\right]\left[\begin{array}{c}x \\ -V_{22}^{-l} V_{21} x\end{array}\right]=$
$\left[x^{\prime} V_{11}-x^{\prime} V_{12} V_{22}^{-l} V_{21} \quad x^{\prime} V_{12}-x^{\prime} V_{12} V_{22}^{-l} V_{22}\right]\left[\begin{array}{c}x \\ -V_{22}^{-l} V_{21} x\end{array}\right]=$
$\left[\begin{array}{ll}x^{\prime}\left(V_{11}-V_{12} V_{22}^{-l} V_{21}\right) & x^{\prime} \cdot(0)\end{array}\right]\left[\begin{array}{c}x \\ -V_{22}^{-l} V_{21} x\end{array}\right]=$
$x^{\prime}\left(V_{11}-V_{12} V_{22}^{-l} V_{21}\right) x>0$
because V is positive definite.

Proposition

V^{*} is positive definite.
Proof:
Let $P^{\prime}=\left[\begin{array}{cc}I & -V_{12} V_{22}^{-1} \\ 0 & I\end{array}\right], \quad P=\left[\begin{array}{cc}I & 0 \\ -V_{22}^{-1} V_{21} & I\end{array}\right]$.

Then

$$
\begin{aligned}
P^{\prime} V^{*} P & =\left[\begin{array}{cc}
V_{11}-V_{12} V_{22}^{-1}\left(V_{22}-V_{22}^{C}\right) V_{22}^{-1} V_{21}-V_{12} V_{22}^{-1} V_{22}^{C} V_{22}^{-1} V_{21} & V_{12} V_{22}^{-1} V_{22}^{C}-V_{12} V_{22}^{-1} V_{22}^{C} \\
V_{22}^{C} V_{22}^{-1} V_{21} & V_{22}^{C}
\end{array}\right] P \\
& =\left[\begin{array}{cc}
V_{11}-V_{12} V_{22}^{-1} V_{21} & 0 \\
V_{22}^{C} V_{22}^{-1} V_{21} & V_{22}^{C}
\end{array}\right] P \\
& =\left[\begin{array}{cc}
V_{11}-V_{12} V_{22}^{-1} V_{21} & 0 \\
V_{22}^{C} V_{22}^{-1} V_{21}-V_{22}^{C} V_{22}^{-1} V_{21} & V_{22}^{C}
\end{array}\right] \\
& =\left[\begin{array}{cc}
V_{11}-V_{12} V_{22}^{-1} V_{21} & 0 \\
0 & V_{22}^{C}
\end{array}\right] \equiv V^{* *} .
\end{aligned}
$$

Moreover, by property (25) of determinants stated above, $|P|=\left|P^{\prime}\right|=1$. Hence P^{-1} and $\left(P^{\prime}\right)^{-1}$ both exist, and we may write $V^{*}=\left(P^{\prime}\right)^{-1} V^{* *} P^{-1}$. Therefore, using (25), (26), and (27) above and the fact that V_{22}^{C} is positive definite by construction, we conclude that V^{*} is positive definite.

Alternative proof:
For any $p \times 1$ vector $x \neq 0$, let $y=P^{-1} x$. Then

$$
\begin{aligned}
\mathrm{x}^{\prime} \mathrm{V}^{*} x & = \\
& =x^{\prime}\left[\left(P^{\prime}\right)^{-1} P^{\prime}\right] V^{*}\left[P P^{-1}\right] x=x^{\prime}\left(P^{\prime}\right)^{-1}\left(P^{\prime} V^{*} P\right) P^{-1} x \\
& =y^{\prime} V^{* *} y>0
\end{aligned}
$$

because $V^{* *}$ is postive definite.

Corollary

Suppose the forecasted covariance matrix is given by

$$
V_{22}^{c}=\alpha^{\prime} V_{22} \alpha
$$

where α is a $(p-k) \times(p-k)$ diagonal matrix with positive diagonal elements. Then the forecasted standard deviation of the variable $k+i$ is then equal to α_{k+i} times its historical standard deviation, while the forecasted correlations between any two forecasted variables are
the same as their historical correlations. The covariance matrix V^{*} is positive definite in this case.

If some diagonal elements of the matrix α are allowed to be zero (a point forecast with probability one), then V^{*} is positive semi-definite.

