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1. The problem

A conditional forecast produces the mean and variance of return, conditional on the forecasted
variables that impact return via a linear factor model. These conditional forecasts are easy to
compute because the historical factor realizations are approximately multivariate normal.

However, this is not the way in which many people think about forecasting. Rather, they want to
say, “I think there is a 50% chance bond yields will rise by 50 b.p., a 30% chance they will stay
the same, and a 20% chance they will fall by 10 b.p.”

We will call such forecasts probabilistic scenarios to distinguish them from a pure conditional
forecast. We need to compute the joint multivariate distribution for all the factors impacting
impact return when the user forecasts some of them with a probabilistic scenario. To do so we
need a new result, the Sliced Normal Theorem proved below.



2. Technical background information and notation

In this section we state well-known results and establish notation. One reference for these results
is Introduction to the Theory of Statistics by Alexander M. Mood and Franklin A. Graybill
(New York: McGraw-Hill Book Company, Inc., Second Edition, 1963), Chapter 9, pages 198-
219.

The random vector Y is distributed as the p-variate normal if the joint density of
VisVaseens Y, 18

Rz -Ly-u) r(r-
HOY) = Hp s o9, =R 0 ey <ho and 1212, o p

(2

and where
(a) R is a positive definite matrix whose elements 1, are constants, and

(b) U is a p %1 vector whose elements |1, are constants.

The univariate case with p=1 is obtained by setting 7, =— . The quantity
g

0=(Y- ,u)' R(Y - ) is called the quadratic form of the p-variate normal. It is a theorem that
+o0 +o00 1 '
~(Y=p) R(Y-4) /2] =172
J‘...Jez dy,--dy, = (2m)"|R)

and does not depend on the vector /.

The p X p covariance matrix of the y ’s is

Oy O
V=] : :
Tp1 Opp

It is also a theorem (Theorem 9.9, page 211) that V' = R™".
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We now define the following partitions:

_ Yl _ UI _ Rn R12 . Vn V12
Y= U= R= V=
Yz Uz Rzl Rzz V21 sz

where
Vi H, Yinl My
Y= U, = A
yk lLIk yp /’{p

Note that R, and V|, are kxk.
The following theorem (Theorem 9.11 on page 213) is critical for what follows:

The conditional distribution of ¥ given Y, is the k-variate normal with mean
-1

U +Vol (Y, ~U;)

and covariance matrix

Rlll = V11 _V12V2_21V21 .

Note that the covariance matrix of ¥ given Y, does not depend on what the value of Y, is. This

fact will be very important.

A probabilistic scenario arises when, instead of forecasting a single realization for the vector Y,,
the user forecasts a probability distribution for the vector Y,. There is, however, a consistency
issue because the true marginal distribution of Y, is given by

1
Vol Lm-u)vam-u)
g(Yz):% e?

(2m)

Also, by definition, the conditional distribution of y, y,, ..., ¥, IVen y,.;, Vs> ---»Y, 18

f1Y)
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Therefore, any forecast by the user other than the probability distribution g(Yz) is inconsistent
with the underlying joint probability distribution 4(Y) stated above.

Nevertheless, an economic forecast often entails the belief, perhaps mistaken, that special
information can be used to infer that the future will be different from the past.

3. The user-supplied distribution for a probabilistic scenario

Some additional notation is required. As above,

Yist
Y .

bl
Y :
( J where Y =| : | and Y, =
4

yk yp

A particular realization of the vector Y, the i th, will be denoted by
Vi (l)

yp.(i)

i

Yy, =

We take as given a user forecast for the vectors y} and their associated probabilities p, .

However this user forecast is generated, we take as given the following (marginal) distribution of
Y,:

' yk+l(i)
Pr(Yz:yz’)EPr ,=| : =p, p =20, Zpl:l : (1)

»,(i)

This discrete distribution will be denoted by &(¥,).

4. The probabilistic scenario expected value and variance

Given the user forecast, the expected value of Y, is
E(Y;8) = pys=U; (2)
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where the notation £ (Yz; 5) denotes that the expectation is taken with respect to the user-

provided distribution {(Yz) and where the superscript C denotes “conditional on the user
forecast.”

Similarly, the (p — k) X(p — k) covariance matrix of Y, is given by

w%&a=Eﬂ%—ﬂzmz—Mzﬂf}

I

=P [yz" NI }[yé - 2P } 3)

—1/C
=V

Equations (2) and (3) follow directly from the definitions of expected value and covariance.

We require the following Sliced Normal Theorem to infer anything about the distribution of ¥
given the user forecast f(Y;) . Note also that the user forecast alone tells us nothing about the
covariance of ¥ and ¥,.

5. The Sliced Normal Theorem

From the well-known results stated above in Section 2, for each realization of the random vector
Y, =y}, the conditional distribution f (Y1 Y, = y;) is multivariate normal and has a known mean

and covariance matrix:
(¥[3) ~ [0y + V202 (3 =UL) Vo = Vil 2] @)

For each i these conditional distributions are slices of the multivariate normal distribution, scaled
so that the volume under the density function is one. That is, using the results from Section 2,

i h(Y Y ;)
(W) =—F==
g (y 2)
where ( l,) is the scale factor that makes the volume one. Here g(Y,) is the #rue marginal
g\,

distribution of Y,, not the user forecast é(Y,).
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The sliced normal distribution for the p X1 vector Y is defined by these slices and the user-

supplied distribution &¥;) with mean Us = z p,ys and covariance matrix V,;. Note thatY is

1

not multivariate normal. By Theorem 9.11 of Mood and Graybill stated above, Y, is a mixture of
multivariate normals, while the discrete distribution for Y, is &(¥,) defined above. Therefore the

joint distribution of 'Y = (Y Y, ) is complicated.

1> 72

More formally, from (4) we know that the conditional density of the k£ X1 vector ¥, for each
given (p —k)x1 vector ¥, =y} is

1 e‘%[yl_(ul'”/lzl/z_zl(yg_Uz))]’[Vll_’/lez_lezl]il[Yl_(U1+V12V251(}’§_U2))] ‘ (5)

k
Q@2 [ =V Vs
Multiplying (5) by the probability p, gives the equation for the i ™ slice of the sliced joint normal:
p, )= pf(Hly)  for —e<y, <o, j=1 Lk Y=y

Hence, given the user’s forecast for the n realizations y;, i =1,2, ... ,n, the joint probability
density function for the p-variate sliced normal is

plf(Yl‘y;) for _°°<yj<°°9 j:1,...,k;Y2:y;

p(1.5)=4 pf(Klyi) for —w<y <e, j=1. kL= (6)

pf(Hlyg)  for —e<y <w, j=1,. .k Y, =)

Of course, the conditional distribution of ¥ given Y, for the sliced normal distribution is
f (YI‘Y2 = y;) , while the marginal distribution of Y, is Pr(Y2 = y;) = p, . The marginal distribution
of ¥ is

Zpif()ﬂyé) for —o<y <o, j=1,..,k; L=y, i=1...,n .

The expected value of the vector ¥, for the sliced normal distribution is
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Uf = E(Y)

=3 o [ rlytrd -y,

=X o[ () )
= Z:p[[U1 VoV (v - Uz)] =U, + Vlez;Zpi(yé )
=U, +1,05 (Us =U,) -

Similarly the expected value of the vector Y, for the sliced normal distribution is

Uy = E(Y)

=2 T Tpiyéf(ﬁ\yé)dyl-"dyk

I —o0

=Zpl~y§T-~Tf(Yl\yé)dyl---dyk (8)
=2 pys )

= 2P

We now state the formal result:

Sliced Normal Theorem

The p-variate Sliced Normal Distribution defined by (6) has mean

uel | U7V (Ur -U,) .
us|” P AT @

and covariance matrix

: {Vn—m@(@—ni)%;‘nl VbV 10

Vo= Crr-1 C
VoV Vi Va
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Equations (7) and (8) establish (9). We now must prove (10). Note that V,, =V, by definition.

The difficulty involves computing the covariance matrices ¥;, = (V) and V7.

6. Computation of V11

By definition

V= ZJ Jp,Y Ue)x -uf) ) /(%[ )y, . (11)

—00 —00

To ease notation we define
bEE(Yl‘yé):Ul +V12V2;1(y; _Uz) 5 (12)

see equation (7). Then (11) may be written as

V=
zizp{[x —E(Yl\yé)] +[E(Y1\y£) —UIC]}{[YI —E(K\yé)] +[E(Yl‘ ») —Uf]} F(¥]y)dyr---dy, =
P RIS (RN P

Performing the multiplication in the integrand gives

X [ ol 06-00-) +(o-0 )1 -0)

- , (13)
+Y =b)(b-UY) +(b-US)b-Uf } (Y\yz)dy1 -dy, .

We now proceed to evaluate the four terms in (13).

> [ Jp(-0)x - -b) ) £ %[y )dy- -y, =

e e (14)
S plvar(Xr)]= X0 -Habava) = i Vatavar

1
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00 o]

[ [ oo =UE)% =b) £(|yA)dse-ay, =

ZJ Jp, (%, -b)(b- UC (Y‘yz)dyr“dyk=
o (15)
Joo [ (s (vt USWICAE

O p(b-Uf) =0.
We will use the following result:

(b= =[v, + 773 (4 = 0] [0 +vor (UF - U] (16)
=Vl (31 -Uz).

ZI thb US)b- UC (Y‘yz)dyl -dy, = using (16)

—00 —00

ZI _[Pz[Vlezz W =US)[ava (v - Us )]'f(Yl\yé)dyw-dyﬁ

—00 —00

Z_L __[oszlezz »=U; )(yé_UZC)'Vz?Vzlf(Yl\y;')dyl'“dyk= -

ZP{VIZVZ?(% -US) (v -U5) VzE'Vzlﬁ”’Tf(Yl‘yé)dyl’"dyk -

Zp{VuV;(y;‘ Uy (v -0y VV} 0=
MoV ViV, Vi -
Substituting (14), (15), and (17) into (13) gives

Vi =V =MV Vo + VoV, VgV Vo

- : (18)
=V VoV (Ve =V Wi Vo -
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7. Computation of V),

By definition

V=2 T---Tp,»(yé ~Uy (Y - Uf)'f(K\yé)dyl---dyk

I —o0 —00

I

v -us) E(x]) -]

I

using (12) and (16) Y p,(y5 U5 Vb5 (v - U5 (19)

I

= 2.0, = U3 33 = U5) V'V,

=V5Va Vs, -

Then

Vi = (V) (20)
=V, Vs .

Comparison of (18), (19), and (20) with (10) completes the proof of the Sliced Normal Theorem.

8. Relationship to ordinary least squares

As is well-known, much of the above is closely related to ordinary least squares regression. To
illustrate this fact, consider the multiple regression equation

Y=U+AY,-U,)+e e
where B=V,,V,,)' isa k x(p —k) matrix. Taking conditional expectations of (21) gives
E(Y|1,)=U, +B(Y,-U,). (22)

Moreover, the covariance matrix of the error term is
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ptee) = £l -0+ -0 -0+ 00 |

B =ui-u) [+ 5 - -v.) 8]

| (5-U)(% -0.) 8 |- 5 A U5 -0 | @3)
=V, + VLB =VuB =V 8

=V AV V) Vo = ViV Vay = ViV Wy,

= Kl - V;ZVZZIVZI

which is cov()ﬂYz) . Also

E[(Yz _Uz)‘gl] = E{(Yz _Uz)[Yl _(Ul +:3(Y2 _Uz))]'}
Y,

= (0 -U)(5 0] | (1 -0, -0 A (24)
= V21 _V22V2;1V21
=0

so the error term is orthogonal to the right-hand-side variables.

9. Positive definiteness of the covariance matrix V*

Of course, the covariance matrix V* for the sliced normal distribution given by (10) must be
positive definite by definition. Nevertheless, it is an instructive check to verify this fact directly.

We will use the following results:

A, A
Let the p x p matrix A be partioned into A = [ ! 12} where A4,

21 22

is kxk A, is kx(p—k), A, is (p—k)xk, and A4,, is

25
(p—k)*x(p—k). 2
A, A, I 0]l4, 4
Then 11 12 - [‘] 11 12 :|All||:l]A22| )
0 A, [0 4,/[0 I

A reference for (25) is T. W. Anderson, An Introduction to Multivariate Statistical Analysis, ond
Edition, New York: John Wiley & Sons, 1984, pages 592-593.
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If P is a nonsingular matrix and if A is positive definite (semidefinite),

26
then P'AP is positive definite (semidefinite). (26)

A reference for (26) is Henri Theil, Principles of Econometrics, New Y ork: John Wiley & Sons,
1971, Proposition F3, page 22.

We now prove:
The k x k matrix [V11 - 1/121/2;11/21] is positive definite. (27)

Proof:

Let x be any k£ % [ vector, x # (0. Then
V., V X
(xr _xr 1/12V2_21)|:I/” 12j||:_V_] :| —
0 Vo 2 Vox

(XV, =XV, VoV, XV, = VUVZ;’VDJ{_

X (v« EO)][_V;VZ Ix} =

VZ_ZII/ZIX:|

x' (Vu - V12V2_21V21) x>0

because V' is positive definite.

Proposition
V* is positive definite.

Proof:

-V v 1 0
Let pr=|t Thbn , P=| :
0 I oV 1
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Then
Vi = ViV (Vo = Vo Vs Var = ViV VsV Vay - ViV Vg = ViV Va5
VsV, vy,
[V -varn, 0}
VialaVa Vs
_[ ey, 0}
ViV Vo = VeV Vay Vi

PV P= P

£

V

— V- V12V2;ll/21 0
0 Vi

Moreover, by property (25) of determinants stated above,

P| = |P'| =1. Hence
P’ and (P')_I both exist,and we may write V" = (P )_1 VP~ . Therefore, using
(25),(26),and (27) above and the fact that V5, is positive definite by construction, we conclude that

V" is positive definite.

Alternative proof:

For any p x ] vector x #0,let y = P~'x . Then

x'Vix =
=/[(P)" P [y [ PP ]x=x(P) (PV'P)Px
— y,V**y > 0

because V" is postive definite.

Corollary

Suppose the forecasted covariance matrix is given by

C _
V2 ,=a V2 P
where a isa ( p- k) X ( p- k) diagonal matrix with positive diagonal elements. Then the

forecasted standard deviation of the variable k£ +i is then equal to a,,, times its historical
standard deviation, while the forecasted correlations between any two forecasted variables are
13
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the same as their historical correlations. The covariance matrix ¥~ is positive definite in this
case.

If some diagonal elements of the matrix @ are allowed to be zero (a point forecast with
probability one), then ¥~ is positive semi-definite.
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